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Introduction
The cosmological principle of secular cosmology is the as-
sumption that on the largest distance and angular scales, there 
are no special places or directions in the cosmos (Gabrielli 
et al., 2010, p. 31; Humphreys, 1994, pp. 14–21). Moreover, 
as noted by Hartnett (2007, p. 75), secular scientists have in 

the past been adamant that neither Earth nor the Milky Way 
galaxy could be “special” in the cosmic scheme of things. In 
the biblical worldview, there is good reason to question this 
assumption, given the importance of Earth in God’s plan of 
redemption. Hence, creation scientists do not uncritically 
accept the cosmological principle of big-bang cosmology. The 
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Abstract

In the biblical worldview, Earth is not just another planet, but the 
unique world where God placed those who are made in His image. 

For this reason, some creationists have speculated that our world might 
have a privileged location in the physical universe. For example, some 
have suggested that the solar system may be near the center of a sequence 
of concentric shells of high galaxy number density, accounting for the 
“quantized redshifts” seen in cosmic surveys. In order to rigorously 
test for this possibility, it is necessary to first determine the true spatial 
distribution of galaxies in our local neighborhood. In order to do this, 
however, it is necessary to correct for the fact that some dim galaxies are 
too faint to be seen, an effect that becomes more severe with increasing 
distance. This correction is often obtained via a luminosity function, 
which gives the fraction of galaxies that fall within a selected intrinsic 
brightness range. Recently, the Institute for Creation Research has 
done additional work in this area. In order that the creation science 
community may be able to intelligently critique future galactocentric 
claims, this review presents a detailed description of one method for 
obtaining the luminosity function.
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biblical worldview may well allow for this principle, but it 
does not require it.

There has long been interest within the creation com-
munity regarding the possibility that our Milky Way galaxy 
might be located within a special or preferred location in space 
(Humphreys, 2002; Hartnett, 2005). For instance, the evidence 
of concentric rings of high galaxy density roughly centered 
on the location of our Milky Way galaxy is very unexpected 
within big-bang cosmology. However, there is some question 
as to whether this effect is real. Maps of galaxy positions are 
generated from Earth-based observations, which may lead 
to observer-centered distortions giving the false appearance 
of Earth-centered structures, such as the “fingers of God” ef-
fect discovered in the late 1950s. Observer-centered biases 
must therefore be carefully quantified in order to assess the 
legitimacy of any galactocentric claims. One such effect is the 
Malmquist bias: the systematic drop in our ability to detect faint 
galaxies at progressively greater distances. The purpose of this 
paper is to clearly and concisely explain one of the techniques 
that may be used to determine the most likely true distribution 
of galaxies, given the galaxies that are actually observed. The 
Institute for Creation Research has recently done significant 
additional work in this area and one of us (Lisle) has devised 
a novel approach to determining galaxy luminosity functions 
(Lisle, 2016). Because these methods are often not clearly 
explained in the technical literature, it is our hope that this 
review will help familiarize the creation science community 
with these methods so that future results may be intelligently 
critiqued. 

The Malmquist Bias
In a flux-limited (or magnitude-limited) survey, the number of 
galaxies included in the survey is determined by the minimum 
amount of light per unit area (flux) that can be detected by the 
survey instrument. In such a flux-limited survey, the observed 
number density of galaxies decreases with increasing distance 
from Earth (Strauss and Willick, 1995, p. 54). This is due to 
the fact that the apparent brightness of a galaxy diminishes 
with increasing distance. Thus, at close distances, both faint 
and bright galaxies are detectable. But at greater distances, 
only bright galaxies can be detected. Hence, bright objects 
tend to be overrepresented in the survey simply because they 
are easier to detect, and this effect becomes more pronounced 
with increasing distance. This Malmquist bias is named after 
the Swedish astronomer Gunnar Malmquist (Heydari-Malayeri, 
2014). The Malmquist bias must be taken into account when 
attempting to determine the true distribution of galaxies.

To compensate for the Malmquist bias, one needs to obtain 
a selection function S(r) that gives the fraction of galaxies that 
will be observed at a particular distance relative to the number 

that actually exist at that distance. Conceptually, this fraction 
is given by the observed number density of galaxies at a given 
distance divided by the true number density of galaxies:
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The observed number density is known, since this is simply 
the number of galaxies detected in a volume of space in a given 
survey. If the selection function is also known, then it is pos-
sible to obtain the true galaxy number density as a function of 
distance, thereby removing the Malmquist bias.

In order to obtain this selection function, it is necessary to 
know something about the distribution of galaxy brightnesses 
so that we can estimate how many of the fainter galaxies we 
are missing at larger distances. Specifically, we must find what 
fraction of galaxies fall within a selected range of intrinsic 
luminosity. This histogram of galaxy brightnesses is called the 
luminosity function. We begin our discussion of galaxy lumi-
nosities by addressing the relevant terminology.

Luminosity and Magnitudes
The apparent magnitude m of an astronomical object is a 
measure of its apparent brightness as it appears in our sky. Ap-
parent magnitudes use a logarithmic scale that allows astrono-
mers to describe an enormous apparent brightness range with 
relatively small differences in magnitude values. For instance, 
the apparent magnitude of the Sun is -26.7, while the dimmest 
object that can be detected by the human eye has an apparent 
magnitude of about +6.0 (Freedman and Kaufmann, 2002, p. 
427). As can be seen from these two examples, brighter objects 
have smaller apparent magnitudes, while dimmer objects have 
higher apparent magnitudes. The apparent magnitude scale 
has been defined in such a way that a magnitude difference 
of 5 corresponds to a brightness ratio of exactly 100 (i.e., an 
object with m = 1.0 is 100 times brighter than an object with m 
= 6.0). It should also be noted that m is frequency-dependent, 
since galaxies emit different intensities of light at different fre-
quencies. In galaxy surveys, apparent magnitudes are generally 
measured for a given bandwidth.

The absolute magnitude M is a measure of an object’s 
intrinsic brightness. Specifically, it is defined as the apparent 
magnitude that an object would have at a distance of 10 par-
secs (1 parsec = 3.26 light-years). As is the case with apparent 
magnitudes, objects of greater intrinsic brightness have smaller 
values of M than do intrinsically dimmer objects.

The redshift z is the fractional change in the wavelength 
of a galaxy’s light between emission and detection, which is 
generally attributed to the expansion of the universe.
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The quantity dL(z) is the (redshift-dependent) luminosity 
distance to the galaxy, where the luminosity distance is a dis-
tance measurement for which light obeys the inverse-square 
law.

The relationship between the absolute and apparent 
magnitudes of an object and the object’s luminosity distance 
(measured in parsecs) is given by Freedman and Kaufmann 
(2002, p. 429) and Hogg et al. (2002):

10 10
( )5log 5log ( ) 5

10 pc
L

L
d zm M M d z 

= + = + − 
 

 

		  (2)

We define the distance modulus μ such that
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Eqs. (2) and (3) as written fail to take into account the need 
for a so-called K-correction. This complication is addressed 
later in the paper.

If the luminosity distance is expressed in mega-parsecs 
(Mpc), then Eq. (2) becomes

105log ( ) 25Lm M d z= + +  	 (4)

The Luminosity and Selection Functions
The luminosity function is defined such that ϕ(M)dM is the 
estimate for the true (not just observed) number of galaxies per 
unit volume having absolute magnitudes between M and M + 
dM. At this point, it is necessary to briefly discuss the concept 
of comoving distances and volumes.

In cosmological studies, a comoving distance is one in 
which the expansion of the universe has been “factored out” 
(Bergström and Goobar, 2008, pp. 62, 200). Hence, if one 
were to imagine a hypothetical universe in which galaxies 
had no velocities other than those due to the expansion of 
the universe (i.e., no peculiar velocities), then the comoving 
distances between galaxies would remain constant. Since 
comoving distances (and volumes) remain unaffected by the 
expansion, comoving distances are optimal distance mea-
surements for studying the large-scale distribution of galaxies. 
Hence, when determining the luminosity function, comoving 
volumes should be used when computing number density. 
Hogg et al. (2002) present a number of standard formulae for 

calculating comoving distances. However, it should be noted 
that these formulae have been derived under the assumptions of 
a homogeneous and isotropic universe (standard assumptions 
also used by big bang advocates). In a spatially “flat” universe, 
in which parallel lines never meet or diverge, the comoving 
line-of-sight distance dC to a galaxy is related to the luminosity 
distance and redshift by
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When attempting to discern possible patterns in the spa-
tial distribution of galaxies, one would prefer to keep such 
an analysis as “assumption-free” as possible. Hence, it is 
understandable that one might object to the use of standard 
assumptions for the distance formulae in such an analysis. 
Unfortunately, it is simply not possible to convert redshifts to 
distances without making some assumptions. However, the use 
of standard parameters for the distance formulae in such an 
analysis is not as problematic for our purposes as one might 
initially suspect. For instance, suppose that one could some-
how discern the true comoving distances to all the galaxies 
within a survey without making any cosmological assump-
tions whatsoever. Then suppose we were to calculate these 
comoving distances using Eq. (5). Even if these distances 
were to disagree somewhat, there would still be a one-to-one 
correspondence between the calculated and true comoving 
distances. Hence, any “peaks” in galaxy density that appear 
when the density is plotted as a function of redshift will also 
appear when the density is plotted as a function of comoving 
distance. So even if these calculated distances are distorted 
somewhat due to incorrect cosmological assumptions, con-
centric rings of high galaxy density, if they exist, should still 
be apparent when the galaxy density is plotted as a function 
of distance.

Once the luminosity function has been found, the selec-
tion function may be obtained. Since the redshift z is a proxy 
for distance, the selection function is often expressed in terms 
of redshift:
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The denominator in Eq. (6) is, for a given redshift z, the 
true number of galaxies per unit volume between the magni-
tude limits Mmin and Mmax of the survey, while the numerator 
is the observed number of galaxies per unit volume within 
those same magnitude limits and at that particular value of z. 
Hence Eq. (6) can be thought of as the fraction of galaxies we 
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are detecting, at a particular redshift z, compared to the actual 
number that exist.

For the best estimate of the selection function, one should 
choose the upper and lower limits on the absolute magnitudes 
(Mmin and Mmax) to include as many galaxies as possible. For 
purposes of this explanatory paper, we will ignore certain 
complications that arise in real galaxy surveys, although these 
complications are addressed in follow-up papers (Hebert and 
Lisle, 2016; Lisle, 2016). For instance, real galaxy surveys 
sometimes contain a small number of outlying galaxies having 
anomalously high or low absolute magnitudes, magnitudes 
that are either extremely rare or perhaps even simply errone-
ous. Likewise, traditional methods of finding the luminosity 
function, including the Lynden-Bell/Choloniewski (LBC) 
method, assume a “hard” apparent magnitude limit cutoff; i.e., 
apparent magnitudes less than or equal to a limiting apparent 
magnitude mmax can be observed, while apparent magnitudes 
greater than mmax cannot. In real galaxy surveys, however, the 
apparent magnitude cutoff is “fuzzy”—the vast majority of 
galaxies within the survey have apparent magnitudes less than 
mmax, but a small fraction of galaxies have apparent magnitudes 
greater than this number. Since traditional methods presup-
pose a “hard” apparent magnitude cutoff, the best choice for 
mmax when using these methods is actually a number that is 
less than the very dimmest apparent magnitude in the survey. 
For purposes of this discussion, however, we ignore these 
complications. Instead, we assume that our hypothetical 
galaxy survey contains no anomalously high or low absolute 
magnitudes, and we assume the existence of a “hard” apparent 
magnitude cutoff of mmax. Once the basic theory behind the 
LBC method has been described, necessary modifications to 
the method demanded by conditions in real galaxy surveys 
are discussed in follow-up papers (Hebert and Lisle, 2016; 
Lisle, 2016). 

The number Mlim(z) in our expression for S(z) is the abso-
lute magnitude of the faintest galaxy that could in principle 
be detected at the redshift z. This is computed for each value 
of z by taking the upper limiting apparent magnitude of the 
survey (denoted as mmax) minus the distance modulus μ(z) 
corresponding to that redshift, as given in Eq. (3). This is 
expressed as follows:

lim( ) max 10 max5log ( ( )) 25 ( )z LM m d z m zµ= − − = −  	

		  (7)

The limiting apparent magnitude mmax is determined by the 
limitations of the detector since it can obtain a reliable spec-
trum (necessary for redshift estimation) only over a particular 

range of apparent magnitudes. For galaxies to be included in 
the SDSS survey, their r-band Petrosian apparent magnitude 
must be lower than 17.77 (Strauss et al., 2002). Hence one 
might expect mmax to be equal to 17.77 for the SDSS survey. 
However, the final estimate for this limiting apparent mag-
nitude is not exactly 17.77 due to some complicating factors. 
These factors, as well as more detailed discussions of different 
magnitude systems, are discussed in later papers (Hebert and 
Lisle, 2016; Lisle, 2016). 

Assumptions of the Method
When doing any kind of scientific analysis, it is good to be 
aware of one’s underlying assumptions. The LBC method 
involves a number of implicit assumptions. For instance, the 
denominator of Eq. (6) is said to give the true number of galax-
ies per unit comoving volume for any redshift z, even though 
the denominator is formally independent of z. This implies 
that the luminosity function is independent of redshift (or 
equivalently, of distance). Hence one does not expect galaxies 
of a particular brightness to be preferentially located at any 
particular distance or distances. Although dimmer galaxies 
are much more numerous than brighter galaxies (Sparke and 
Gallagher, 2010, p. 396), one does not expect dim galaxies to 
be any more or less likely to be located at a particular distance 
than galaxies of any other brightness. This assumption, though 
not strictly correct, is widely accepted as a good first approxi-
mation (Gabrielli et al., 2010, pp. 221, 291). It should also be 
noted that there are ways to test the validity of this assumption 
(Gabrielli et al., 2010, pp. 293–297).

Because the Lynden-Bell/Choloniewski method implic-
itly assumes a “hard” cutoff for the survey’s limiting appar-
ent magnitude, this implies that at a particular redshift z, 
any galaxy having an absolute magnitude less than Mlim(z) 

will automatically be detected. To put it another way, the 
method assumes that there is a 100% probability that any 
galaxy at a redshift z having magnitude M ≤ Mlim(z) will be 
detected, but there is a 0% probability that any galaxy with 
M > Mlim(z) will be detected. While this may seem perfectly 
reasonable, it is not necessarily true in real galaxy surveys, 
for reasons discussed in our follow-up papers (Hebert and 
Lisle, 2016; Lisle, 2016). Nonetheless, the approximation is 
workable. We have also assumed that no true galaxies have 
been misidentified as something other than a galaxy (100% 
survey completeness) and that no nongalaxy objects have been 
misidentified as galaxies (100% survey efficiency). This too is 
a good approximation, but it is not exact. A brief discussion 
of survey completeness and efficiency is proved in Ball and 
Brunner (2010).

One of the better-known methods for obtaining the lu-
minosity function is the Lynden-Bell/Choloniewski (LBC) 



Volume 52, Winter 2016	 181

method, originally proposed by Lynden-Bell (1971) and 
later modified by Choloniewski (1987). Willmer (1997) has 
argued, on the basis of Monte Carlo simulations, that of the 
conventional methods for finding galaxy luminosity functions, 
the LBC method provides the most robust estimate of the 
luminosity function’s shape, although another method, the 
stepwise maximum-likelihood method, devised by Efstathiou, 
Ellis, and Peterson (1988) seems to be more popular.

The LBC Method: Introduction
For purposes of this discussion, we are considering a galaxy 
survey consisting of Nobs observed galaxies. The absolute mag-
nitude M, the apparent magnitude m, the redshift z, and the 
distance modulus μ are all assumed to be known for each of 
the Nobs galaxies. The survey’s smallest value of μ is denoted 
by μmin and the largest value of μ is denoted by μmax.

From its original derivation, the LBC assumes that no two 
galaxies in the survey have exactly the same absolute magnitude. 
This is not true of the SDSS survey; due to its limited precision, 
a substantial fraction of galaxies share absolute magnitudes. 
For the time being, this complication is ignored as we present 
Lynden-Bell’s and Choloniewski’s original derivations. How-
ever, this complication does not affect their result, as shown 
in a second paper in this series (Hebert and Lisle, 2016). The 
galaxies are sorted by absolute magnitude in order of decreasing 
brightness, such that Mk+1 > Mk. As noted earlier, we assume 
a “hard” cutoff for the survey’s limiting apparent magnitude, 
which is denoted by mmax.

Consider a plot of the μ versus M values for each of the 
Nobs galaxies in the survey. Figure 1 illustrates this for a small 
hypothetical sample of ten observed galaxies. Of course, a real 
galaxy survey can contain many thousands of galaxies. The 
brightest galaxies (those with the smallest absolute magnitude 
values) are located toward the left-hand side of the figure. 
We have chosen the survey to have lower and upper distance 
modulus limits of μmin and μmax, respectively. Once these 
limits have been chosen, a particular galaxy within the survey 
will have the smallest absolute magnitude Mmin, and another 
galaxy will have the largest absolute magnitude Mmax. Note 
that galaxies above the diagonal mmax line cannot be detected 
because they are too faint to be seen. Also note that given the 
hard apparent magnitude cutoff mmax and the distance modulus 
limits of the survey, the largest absolute magnitude that can 
theoretically be contained within the survey is M = mmax – μmin. 
As noted earlier, however, a real galaxy survey can sometimes 
contain galaxies with absolute magnitudes greater than this 
theoretical upper limit. The reason for this counterintuitive 
result is presented in Hebert and Lisle (2016). For the time 
being, we consider only those galaxies that are brighter than 
this theoretical upper limit.

Lynden-Bell’s Original Method:  
The Basic Concept

The basic premise behind the method is that, as is usually as-
sumed, the luminosity function ϕ(M) is independent of z (or 
equivalently, independent of μ). 

Consider an arbitrary value of absolute magnitude Mk 
located between the bounds of the survey Mmin and Mmax (Fig-
ure 2). We can count the observed number of galaxies within 
the thin shaded rectangle centered at Mk. This thin shaded 
rectangle is itself contained within a large shaded rectangle, 
and we can count the number of observed galaxies within 
the large shaded rectangle, as well. We denote the number of 
galaxies within the small rectangle as dX(Mk), and we denote 
the number of galaxies within the large shaded rectangle as 
C(Mk). Note that all the galaxies we have counted are below 
the value of μ at the point where the diagonal line defined by 
μ= mmax – M intersects Mk, so that we are only considering gal-
axies between the horizontal lines defined by μ = μmin and μ = 

Figure 1. Plot of distance modulus μ versus absolute 
magnitude M for a simulated magnitude-limited survey 
containing ten observable galaxies. Of course, a real galaxy 
survey may contain many thousands of such galaxies. Note 
that the diagonal line is defined by the limiting apparent 
magnitude mmax of the survey, such that no galaxies are 
observed within the triangle above the diagonal line. As 
discussed in the text, it is assumed that these absolute 
magnitudes have been K-corrected, and that the distance 
moduli have already been transformed according to Eqs. 
(18) and (19). 
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mmax – Mk. Because all the galaxies we are counting are below 
the diagonal line (and hence should be visible), we should, in 
theory, not be overlooking any galaxies and should be counting 
100% of the galaxies that are actually present within the two 
rectangles. In other words, the observed number of galaxies 
within the two rectangles should be equal to the true number 
of galaxies. Note also that both the thin and large rectangles 
have the same height, which means they are both defined by 
the same maximum and minimum distance moduli values. 
Or equivalently, they are characterized by the same comov-
ing volumes in physical space. We can define the fraction (or 
percentage) of galaxies within the thin rectangle compared to 
the large rectangle as

1
Galaxies/volume (thin rectangle)Fraction ( )
Galaxies/volume (large rectangle)
Galaxies in thin rectangle ( )
Galaxies in large rectangle ( )

kM

dX Mk
C Mk

=

= =
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Now consider two similar rectangles, but which extend all 
the way from μ = μmin to μ = μmax (Figure 3). Remember that 
ϕ(M)dM is defined to be the true number of galaxies per unit 
volume between M and M + dM. Hence, we can define in a 
similar fashion a second fraction as

min
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Remember also that ϕ(M) is assumed to be independent 
of z (or equivalently, of μ). This means that galaxies within 
the bin centered on Mk should make the same fractional (or 
percentage) contribution to the cumulative number of galax-
ies per unit volume (such that M ≤ Mk) regardless of the size 
of the comoving volume being examined. In other words, we 
are assuming that however many galaxies in our survey have 
M ≈ Mk, these galaxies are more or less uniformly distributed 

Figure 2. Because the tops of both the thin and large gray 
rectangles lie below the diagonal line, the counted numbers 
of observed galaxies in both rectangles should be equal to 
the true numbers of such galaxies. The number of observed 
galaxies within the thin rectangle compared to the number 
of observed galaxies within the large rectangle is denoted in 
this paper as Fraction1.

Figure 3. Although the true distribution of galaxies ϕ(M) 
is unknown, if one assumes that ϕ(M) is independent of 
distance (or μ), then the ratio of the true number of galaxies 
within the thin rectangle compared to the true number of 
galaxies within the large rectangle (denoted as Fraction2) 
should be equal to Fraction1 , as described in Figure 2.
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throughout the comoving volume of the survey. So if galaxies 
with M ≈ Mk contribute 0.5% to the cumulative number of 
galaxies per unit comoving volume (such that M ≤ Mk) for 
values of μ ranging between μ = μmin and μ = mmax – Mk, then 
they should also contribute ~0.5% to the cumulative number 
of galaxies for μ between μmin and μmax. Hence, if this assump-
tion is true, then Fraction1(Mk) = Fraction2(Mk):

min

( ) ( )
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k k
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M

dX M M dM
C M M dM

φ

φ
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This is the fundamental assumption behind the method. 
Let us now define ψ(Mk ) to be the cumulative luminosity 
function for Mmin ≤ M ≤ Mk:
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is the differential contribution to this luminosity function. We 
may thus rewrite Eq. (10) as
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Note that because Mk is an arbitrary value of M, it may be 
treated as a “dummy” variable should one integrate Eq. (13) 
up to some specific value of Mk , say Mk ' . Performing this 
integration from M = Mmin to Mk = Mk ' yields
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After careful consideration of the manner in which a single 
galaxy would contribute to this integral, Lynden-Bell (1971) 
converted this expression into a discrete form. Replacing Mk ' 
with M' to match his notation we have:
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Eq. (15) gives an expression for the (unnormalized) cumu-
lative luminosity function in terms of C

_-(Mi), which is defined 
to be the number of points inside the large rectangle of Figure 
2 but excluding the contribution of the ith galaxy itself. Note 
that for i = 1, the way in which we have defined C

_
(Mi) im-

plies that C
_
(M1 = Mmin) = 0. To prevent ψ from being equal 

to 0, Lynden-Bell imposed the requirement that the quantity 
in parentheses in Eq. (15) be equal to 1 for Mi = Mmin = M1. 
Because Choloniewski’s version of the method is in some ways 
more straightforward, we will not discuss this version of the 
method any further.

A Complication: The K-Correction
However, before discussing Choloniewski’s modification to 
the Lynden-Bell method, it is necessary to address a complica-
tion when using Eqs. (2), (3), and (4) that was not explicitly 
addressed by either Lynden-Bell or Choloniewski. The ap-
parent magnitude m in Eq. (2) has been determined through 
a bandwidth in the observer’s reference frame. However, de-
termination of the galaxy’s true intrinsic brightness should be 
performed in the galaxy’s rest frame. Since the light from the 
galaxy is being detected through a filter of limited bandwidth, 
red- or blue-shifting of this light will cause the portion of the 
galaxy’s spectrum that can be detected by the filter to be shifted 
partly into or out of the filter’s bandwidth, leading to a distortion 
in the calculated absolute magnitude M. In order to correct for 
this distortion, the z-dependent K-correction has been defined 
(Hogg et al., 2002) such that

observed frame emitted frame ( )m M K zµ= + +  	 (16)

A direct calculation of the K-correction requires inte-
gration of a galaxy’s flux spectral density (energy per unit 
time per unit area per unit frequency). Such calculations 
are computationally unrealistic for galaxy surveys contain-
ing hundreds of thousands of galaxies. However, much 
faster analytical techniques can estimate the appropriate 
K-corrections. For instance, Chilingarian, Melchior, and 
Zolotukhin (2010) have published a technique (as well as 
an online K-calculator and codes at http://kcor.sai.msu.ru/
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getthecode/) for such a purpose. Their technique requires 
the galaxy redshift z and the galaxy color, which is defined 
as the difference in apparent magnitudes measured in two 
different bandwidths. If one measures the luminosity distance 
in megaparsecs (Mpc), the expression for the K-corrected 
absolute magnitude becomes:

corrected emitted frame observing frame 105log ( ) 25 ( ,color)LM M m d z K z= = − − − 

corrected emitted frame observing frame 105log ( ) 25 ( ,color)LM M m d z K z= = − − −
 

		 (17)

Furthermore, Eq. (16) is now the defining relationships 
between M, m, and μ, rather than Eq. (3). However, Chol-
oniewski did not include a K-correction in his discussion of the 
method. This omission may be ameliorated by using Eq. (16) 
to obtain the K-corrected absolute magnitude for each galaxy 
and by making a coordinate transformation

avg observed frame emitted frame observed frame corrected( )K z m M m Mµ µ′ = + = − = − 

avg observed frame emitted frame observed frame corrected( )K z m M m Mµ µ′ = + = − = −
	

(18)

where Kavg(z) is the average K-correction of galaxies in our 
survey at redshift z. Details on obtaining Kavg are provided in 
Lisle (2016). Using the μ' coordinate frame, the K-correction 
appears to vanish as it is absorbed into the distance modulus. 
Hence the same relationship exists between μ', Mcorrected , 

and 
m in Eq. (18) as between μ, M, and m in Eq. (16). Thus we 
may continue to use Choloniewski’s method, despite this 
complication, provided that we use K-corrected absolute 
magnitudes and replace μ with μ'. Note that this coordinate 
frame transformation is an approximation that accommodates 
the average K-correction of all galaxies at redshift z, though 
individual galaxies may have somewhat different K-corrections 
due to their various colors.

We will follow Choloniewski’s notation in this discussion 
of his method and will therefore omit the prime symbol from 
the distance modulus. But bear in mind that from this point on 
we are assuming that each absolute magnitude M has already 
been K-corrected and that each value of μ has been replaced 
by μ' = μ + Kavg(z) . Once these new values of μ have been de-
termined, they may be plotted on a chart (as in Figure 1). Note 
that μmin and μmax must also be converted to the μ' coordinate 
system as follows:

min min avg min

max max avg max

( )

( )

K z
K z

µ µ

µ µ

′ = +

′ = +
 	 (19)

Choloniewski’s Modification to the Method
Choloniewski (1987) modified Lynden-Bell’s original method 
in order to obtain a normalized (noncumulative) differential 
version of the luminosity function. In considering Figure 1, 
note that the apparent number density of observed galaxies 
in the μ-M plane (actually, the μ' – Mcorrected) plane, which we 
shall call Napp, may be expressed as a sum of two-dimensional 
Dirac delta functions

1
( , ) ( , )

obsN

app k k
k

N M M Mµ δ µ µ
=

= − −∑  	 (20)

such that the apparent galaxy number density at a given loca-
tion in the M-μ plane is zero if a galaxy is not present, but 
infinite if one is. The apparent density may also be expressed as

true max( , ) ( , ) ( )appN M N M m mµ µ= Θ −  	 (21)

where Ntrue(M, μ) is the true density of galaxies in the M-μ 
plane, multiplied by a Heaviside “step” function, defined as

[ ] ( ) max
max max

1
0 otherwise

m M m
m m m M

µ
µ

= + ≤
Θ − = Θ − + =   


 

[ ] ( ) max
max max

1
0 otherwise

m M m
m m m M

µ
µ

= + ≤
Θ − = Θ − + =   

 	 (22)

This step function “masks” the galaxies in the upper triangle 
in Figure 1 so that they cannot be observed, simulating the 
effect of the limiting apparent magnitude mmax. Per our as-
sumption that absolute magnitude is independent of position, 
we can express Ntrue as the product of the one-dimensional 
functions φ(M) and D(μ): 

( , ) ( ) ( )trueN M M Dµ ϕ µ=  	 (23)

Our expression for Napp then becomes
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[ ]( , ) ( ) ( ) ( )app maxN M M D m Mµ ϕ µ µ= Θ − +  		

		  (24)

Because the right-hand side of Eq. (20) is a sum of two-
dimensional Dirac delta functions, and because φ(M) and D(μ) 
are independent of one another, it is reasonable to express the 
right-hand side of Eq. (24) in terms of sums of one-dimensional 
Dirac delta functions:

1

1

( ) ( )

( ) ( )

obs

obs

N

i i
i

N

j j
j

M M M

D d

ϕ ψ δ

µ δ µ µ

=

=

= −

= −

∑

∑
 	 (25)

Hence, our expression for Ntrue(M, μ) becomes

1 1
( , ) ( ) ( )

obs obsN N

true i i j j
i j

N M M M dµ ψ δ δ µ µ
= =

  
= − −  
   
∑ ∑  	

		  (26)

Combining Eqs. (20), (24), and (26) yields

[ ]
1 1 1

( , ) ( ) ( ) ( )
obs obs obsN N N

k k i i j j max
k i j

M M M M d m Mδ µ µ ψ δ δ µ µ µ
= = =

  
− − = − − Θ − +  

   
∑ ∑ ∑ 

[ ]
1 1 1

( , ) ( ) ( ) ( )
obs obs obsN N N

k k i i j j max
k i j

M M M M d m Mδ µ µ ψ δ δ µ µ µ
= = =

  
− − = − − Θ − +  

   
∑ ∑ ∑

		  (27)

Note that we can eliminate the mathematically awkward step 
function by judicious selection of the indices on the right-hand 
side of Eq. (27). This may be done by imposing the restriction 
that Mi + μj ≤ mmax for all i and j:

max

1 : :
( , ) ( ) ( )

i jobs MN m

k k i j i j
k i j

M M d M M
µ

δ µ µ ψ δ δ µ µ
+ ≤

=

− − = − −∑ ∑ ∑ 

max

1 : :
( , ) ( ) ( )

i jobs MN m

k k i j i j
k i j

M M d M M
µ

δ µ µ ψ δ δ µ µ
+ ≤

=

− − = − −∑ ∑ ∑ 	 (28)

Determining the Weighting Factors
In order to obtain a practical solution, it is necessary to solve 
for the ψ and d weighting factors on the right-hand side of Eq. 
(28). One may solve for a particular dj value, say dp, by integrat-
ing Eq. (28) over all values of M but only over one particular 
value of μ (Figure 4). To ensure that the integral of a Dirac 
delta function is nonzero, the argument of the delta function 
should fall inside the limits of integration (Griffiths, 1989, p. 
49). Hence, in this particular case, one should technically start 
the integration just a little to the left of Mmin and end it just 
a little to the right of Mmax. Likewise, the second integration 
should be performed from μp - ε to μp + ε, where ε is a vanish-
ingly small number such that ε is just a little smaller than the 
minimum possible difference between any two adjacent values 
of μj. Having done so, one obtains an expression for each of 
the Nobs individual dp values:

max

:
1 1,2,...,

i pM m

p i obs
i

d p N
µ

ψ
+ ≤

= =∑  	 (29)

Likewise, one can integrate both sides of Eq. (28) from μmin to 
μmax and from Mq – σ to Mq + σ, where σ is a vanishingly small 
number such that it is smaller than the smallest possible dif-
ference between any two adjacent values of Mi. This yields, for 
a particular choice of i = q,

Figure 4. Area of integration used to obtain a specific weight-
ing factor dp. 
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max

:
1 1,2,...,

q jM m

q j obs
j

d q N
µ

ψ
+ ≤

= =∑  	 (30)

Relating the Weighting Factors to the Ck’s
However, we still need some way of relating these weighting 
factors to the observed number of galaxies within the survey. 
To this end, we redraw Figure 2, but without the small shaded 
rectangle centered on Mk (see Figure 5). We then define Ck = 
C-(Mk) as the number of galaxies contained within this large 
shaded rectangle, or more precisely, as the number of galaxies 
having values of M and μ such that Mmin ≤ M < Mk and μmin ≤ 
μ ≤ mmax – Mk. Note that, since M1 = Mmin, zero galaxies satisfy 
the requirement that Mmin ≤ M < M1. Hence no galaxies are 
inside the box when M = Mmin and C1 = 0. We may use Eq. (28) 
to derive a useful relation between the Ck’s and the ψi values. 
We again integrate Eq. (28), but this time from μ = μmin to μ = 
μmax and from M = Mmin – σ to M = Mk + σ. Upon doing so, the 
left-hand side of Eq. (28) yields the visible number of galaxies 
such that M ≤ Mk (remember that there are zero visible galax-
ies above the diagonal line). Note that this number of visible 
galaxies is equal to Ck + 1, since Ck excludes, by definition, the 
galaxy for which M = Mmin.

The result, combined with integration of the right-hand 
side yields

maxmax max

min min

max

: :

1 :

1 ( ) ( )
ki j i j

k j

MM m M m

k i i j j
i jM

M mk

i j
i j

C M M dM d d

d

σ µ εµ µ
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Eqs. (30) and (31) may then be used to obtain an extremely 
useful recursion relation. If one substitutes Eq. (30) into Eq. 
(31) in order to eliminate the summation over j and also 
obtains an expression for Ck+1 by replacing k in Eq. (31) with 
k+1, one can derive:

1
1

1k
k k obs

k

C k 1,2,...,N
C

ψ ψ+
+

+
= =  	 (32)

Since the Ck values may be obtained via simple counting, 
knowledge of ψ1 automatically determines all the other values 
of ψ. Generally, ψ is taken to be equal to 1. However, the actual 
choice of ψ1 is not critical, since the true density of galaxies in 
Eq. (28) for a given Mi and μj actually depends on the product 
of ψidj, not just ψi. Hence, choosing ψ1 to be some other value 
than 1 will just result in different dj values, leaving the overall 
factor ψidj unchanged.

Obtaining the Comoving Volume  
and the Total Number of Galaxies

In order to express the luminosity function in terms of galaxies 
per unit volume, it is expedient to calculate the comoving vol-
ume of the survey. From our definition of the distance modulus 
in Eq. (3), we see that each value of μ (or equivalently, each 
value of z) corresponds to a unique luminosity distance dL. 
Eq. (5) may then be used to convert this luminosity distance 
into a comoving distance. Once the minimum and maximum 
distance moduli (or the minimum and maximum z values) for 
the survey are used to obtain the minimum and maximum co-
moving distances dc,min and dc,max, the appropriate total comoving 
volume for the survey may be obtained via

Figure 5. Geometry used to count the number of visible 
galaxies having absolute magnitudes between Mmin and Mk. 
C(Mk) is defined to be the number of galaxies within the 
rectangle but excluding the galaxy on the rectangle’s right-
hand edge.
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2 2
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c c

c c

d d

t
d d

V r dr d r dr d d
θ φ

θ θ φ′ ′ ′= Ω =∫ ∫ ∫ ∫ ∫  	

		  (33)

It should be noted that Choloniewski seems to have made 
an error in his original paper. His originally defined Vt that he 
used to obtain the luminosity function (Choloniewski, 1987, 
p. 275) was actually expressed in terms of luminosity distance, 
rather than comoving distance, which is more appropriate for 
this kind of analysis. Upon obtaining Vt, our expression for the 
luminosity function becomes

max
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1 1

1( ) ( , )

1 ( )
obs obs

true
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N N

i i j
i jt

M N M d
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M M d
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µ ε
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ψ δ
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= =

=

  
= −   
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∫

∑ ∑  

		  (34)

The total number of galaxies within the survey may be 
obtained by integrating our expression for Ntrue, Eq. (26), over 
all values of M and μ:

max max

min min

1 1
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obs obs

M
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N N

i j
i j

N N M dMd

d

σ µ ε

σ µ ε
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+ +
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=
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∫ ∫

∑ ∑
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Obtaining the Luminosity Function
Once Vt and all the values of ψ and d have been obtained, the 
problem has, in principle, been solved. However, our solution 
is undefined for values of M that fall “between” the absolute 
magnitudes of the Nobs galaxies in Figures 1 and 4. Since we 
will need to integrate the luminosity function in order to obtain 
the selection function S(z), it is expedient to obtain a version 
of the luminosity function that is defined at regularly spaced 
intervals of M. We denote this more useful version of the lu-
minosity function as ( )Mφ , and it is obtained by integrating 
Eq. (34) over a small bin width of ΔM and then dividing the 
resulting numbers by ΔM:
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: 1

( ) ( )

i obs

M M M M

M M
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+∆ +∆

∈ +∆
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=
∆
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		  (36)

Once this version of the luminosity function has been ob-
tained, it may be integrated, as in Eq. (6) to obtain the selection 
function S(z). In order to obtain an estimate for Mlim(z) for each 
value of z in the integration, it is necessary to insert mmax and 
Kavg(z) into Eq. (17). Kavg(z) can be obtained by averaging all the 
different K-corrections for the galaxies within a small bin of 
width Δz centered on that particular value of z.

Demonstration of the Method
Of course, there are additional complications that must be 
addressed when finding the luminosity function for a real 
galaxy survey. These are discussed in an accompanying paper 
(Hebert and Lisle, 2016), along with a demonstration of the 
LBC method.

Conclusion
The possibility that our galaxy may occupy a special location 
within the universe is obviously of great interest to the creation 
science community. However, testing of such a possibility 
requires the true (not just apparent) distribution of galaxies in 
the vicinity of our own Milky Way galaxy. This in turn requires 
determination of the luminosity function. Because methods 
used to obtain luminosity functions are rarely explained clearly 
in the technical literature, we have provided a detailed discus-
sion of one such method. It is our hope that such an explanation 
will (1) enable the creation science community to intelligently 
critique claims that our galaxy occupies a privileged location 
in space and (2) serve as a “stepping stone” for future creation 
researchers.
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