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Baraminology classmcatlon
Based on Gene Content Similarity Measurement

Jean 0’Micks*

Abstract
Arecent genomics-based baraminology method has been developed
that measures the gene content similarity (the Jaccard Coeth-
cient Value, or JCV) between species and assigns them to individual
baramins. The method is based on the creationist assumption that
genes are conserved across genomes within a baramin and represent
orthological functional units. Species from the same baramin should
contain many common genes and thus have a high JCV, whereas spe-
cies from different baramins should have a low JCV.

This method has been further developed and estimates baramins
based also on k-means clustering. The method also calculates two pa-
rameters, the pan-genome quotient (PGQ) and the completeness index
(CI), both of which describe how much genome erosion via gene loss
has occurred in the pan-genome of the archebaramin since the Fall.
The PGQO measures the intersect/union of all genes in all species in a
given baramin, while the CI measures the number of genes in all spe-
cies in the baramin divided by the number of species in the baramin
times the size of the union of orthologous genes.

This method has been heretofore used in the analysis of Nucleocyto-
plasmic large DNA viruses (NCLDVs, which bear remarkable similari-
ties to bacteria), Archaea, and insects. The method is applied to a data
set of 26 fungal species in the present paper. The algorithm predicted
three putative baramins, with seven species from Pezizomycotina, three
from Agaro/Ustilagomycotina, and 15 from Saccharomycotina.

Based on previous experience, there is no single JCV cutoff by
which species can be assigned into the same or different baramins. For
example, bacterial baramins may have a rather low mean JCV due to
horizontal gene transfer (HGT). In general, gene content baraminology
studies depend on the biology of the organisms under study. With more
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be a promising tool for many future baraminology studies.



28

Creation Research Society Quarterly

Introduction

In recent years, the evolutionary com-
munity has moved away from inferring
species relationships by using phyloge-
netic trees, which are based on single-
gene families, because many times they
produce conflicting results (Teichmann
and Michison, 1999). Instead, so-called
phylogenomic approaches are being
taken into consideration to construct
species relationships based on whole ge-
nome data, which average out the differ-
ences between individual genes. These
include superalignment, superdistance,
and supertree, as well as gene-content
methods. Of these, this paper will focus
more on the gene-content approach.
Until recently, not many genetic
baraminology methods have been de-
veloped. Wood (2003) and Shan (2009)
have proposed speculative models
involving transposable elements and
genomic rearrangements. Wood (2013)
also performed a study that showed that
genetic diversity in ancient DNA falls
within modern sequence diversity in
the horse, dog, and cat kinds, illustrat-
ing the continuity between older and
newer species of a given holobaramin.
More recently, a whole-genome content
comparison method has been developed,
which calculates the Jaccard Coefficient
Value (JCV) for gene content between
all possible species pairs within a set of
species (O’'Micks and Lightner, 2017).
From a creation perspective, genes
code for proteins, which represent
functional units in an organism, such
as enzymes, transcription factors, struc-
tural proteins, or ion channels. These
functional units are conserved in species
across all life and resist evolutionary
turnover (Cserhati, 2007). Whereas
gene-content comparisons may capture
the species relationships between single-
celled organisms well, the relationship
between multicellular organisms might
not be so clear-cut. This is because,
first, multiple splice variants multiply
the number of gene variants and hence
orthologs that a given species may have.

Second, since the majority of eukaryotic
species are multicellular, genetic inter-
actions between different tissues and
cell types further complicate the picture.

Species that belong to the same
holobaramin arguably have similar
morphological, biochemical, and ge-
netic features. Therefore, similar species
should have many genes in common on
a genomic level. These genes of similar
function belong to the same gene cluster,
or orthology group. Therefore, the first
main step in determining the genetic
relationship between species is to clas-
sify individual genes according to their
corresponding orthology groups. For
this, many gene/protein clustering tools
and databases are available. The second
major step is to calculate the distances
between species in the group under
study based on their orthology content.
The third and last step involves cluster-
ing species together based on mutual
similarity between species within the
same holobaramin and dissimilarity
between all other species in the data set.

This paper will describe the process
of determining gene orthology and
calculating similarity and distance
values between species based on gene
content, as well as clustering species
into baramins based on gene-content
similarity. Then the JCV algorithm will
be presented and shown how it applies
to several test cases.

Gene-content
Comparison Methodology

Defining gene clusters/groups
Genes with similar function are called
homologs, which includes several
categories. Orthologs are genes that
functionally correspond to each other
between two species, whereas paralogs
are genes that functionally correspond
to each other within a species. Paralogs
could have formed via gene duplication
from existing genes, otherwise multiple
gene copies may have been created as

redundant functional elements, such
as the hemoglobin cluster genes (Liu
and Doran, 2006). Resolving the proper
relationship between orthologs is made
difficult by the presence of paralogs,
since we then have to figure out which
of multiple paralogs a given ortholog
matches to. Between species, xenologs
are orthologous genes that are a result of
horizontal gene transfer (HGT). Other
issues that affect correct categorization
of genes to gene clusters include gene
loss/absence (Daubin etal., 2003), gene
order (Vishnoi et al., 2010), and e-value
cutoffs, which designate whether two
genes are orthologous or not (Rosenfeld
etal., 2016).

In some cases, orthology clusters
have already been determined by previ-
ous researchers. In such cases, orthology
group definition is not necessary.

A common step in defining clusters
of orthologous genes is by running
an all-versus-all blast of all the genes/
proteins in the genome among all
subject species. The BLAST algorithm
sequentially compares a query sequence
either with a single target sequence or a
whole database full of target sequences
and measures how good the alignment
is between the query and the target(s).
Some widely used gene cluster databases
are the COG (Cluster of Orthologous
Genes) database (Tatusov et al., 2003)
and the eggNOG database (Powel et
al., 2014). Algorithms that define gene
clusters include OrthoMCL, InParanoid
(Sonnhammer and Ostlund, 2015), and
OMA (Roth et al., 2008). Tables 1 and
2 list some of the best-known orthology
algorithms and databases.

An algorithm that does all-versus-all
blasts is the COGnitor program (NCBI,
2016). It was devised based on the meth-
odology used to build the COG database
(Tatusov et al., 2001). Here reciprocal
best BLAST hits between two differ-
ent genomes are identified as a pair of
orthologs. Clusters of orthologous genes
(COGs) are formed by adding ortholog
pairs from at least three species (ortholog
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Table 1. Several well-known gene orthology databases.

Database name

Data

Reference

COG & KOG Clusters of orthologous groups of proteins for prokaryotes and eukaryotes | Tatusov et al., 2003
eggNOG (version 4) | Non-supervised orthologous group data for 3686 organisms Powell et al., 2014
HomoloGene An automated system for constructing putative homology groups from | NCBI, 2016

the complete gene sets of a wide range of eukaryotic species

Inparanoid (version 8)

Ortholog groups for 273 proteomes, inferred by Inparanoid algorithm

Sonnhammer and

Ostlund, 2015

algorithm

MBGD Comprehensive platform for creating orthologous groups across Uchiyama, 2007
multiple genomes
OrthoDB Hierarchical catalogs of orthologous gene groups in animals, fungi, and | Waterhouse et al.,
bacteria 2013
Ortholog Ontology | Ortholog database that integrates numerous types of genome and Chiba etal., 2015
biological data
OrthoMCL-DB Stores information on orthologous groups derived by OrthoMCL Fischer et al., 2011

triangles). The Inparanoid algorithm
(Remm et al., 2001) makes provisions
for removing proteins from a pairwise
species comparison, which are para-
logs, which are determined by giving
reciprocal best within-species BLAST
hits to their corresponding orthologs.
The EGO algorithm extends this to
multiple species comparisons (Lee et
al., 2002). The OrthoMCL algorithm
(Li et al., 2003), used in the method
presented in this paper, also determines
orthologs between species and paralogs
within species and then assigns each
protein sequence pair a weight, accord-
ing to the —log, (p-value) of the BLAST
hit. These weights are then represented
in a symmetrical weight matrix and
converted into a graph. The weights
also correspond to the probability of
transitioning from one protein to the
next one in the MCL (Markov cluster)
algorithm (Enrightetal., 2002). During
the application of this algorithm, the
matrix is multiplied until there is little or
no change in it, whereby the final matrix
represents the desired protein clusters.
Different numbers of clusters of
different sizes can form based on the

e-value cutoff that is applied during the
blast. If the cutoff is too high, then few
clusters are formed, each with many
members. On the other hand, if the
cutoff is too low, then too many clusters
form with too few members. Rosenfeld
et al. (2016) found that the optimal e-

10 and 1-19,

value for blasts is between
Otherwise, reciprocal best hits between
the proteomes of different species helps
determine clusters.

Another useful tool in determining

orthology of a given species is compar-

ing each protein sequence to already
existing orthology databases, such as
the COG database. A well-known al-
gorithm that does this is the Inparanoid
algorithm (Ostlund et al., 2010). The
eggNOG database contains HMM
profiles for protein families from 106
different taxonomical categories, from
bacteria to insects to birds. Therefore,
instead of running a BLAST search, an
HMM search could be run to identify
which cluster (orthology group) a given
protein belongs to.

Table 2. Several well-known orthology algorithms and programs.

Algorithm Description Reference
COGanitor | Program that assigns protein sequence to | Natale et al., 2000
a COG using BLASTP
InParanoid | Graph-based clustering of all-versus-all Ostlund et al., 2010
BLAST comparisons
OrthoMCL | Groups genes together based on Lietal., 2013
sequence similarity
OMA Derives orthology groups based on Roth et al., 2008
bidirectional best hits
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Defining haraminic distances
hased on gene content

When the orthology classification has
been determined for each gene within
a species’ genome for a number of spe-
cies, this data can be represented by a
presence/absence matrix M, where M,

represents the presence (1) or absence
(0) of orthology group j in species i. The
matrix is therefore made up of rows of ze-
roes and ones. Weights can be assigned
to different orthology groups according
to their importance within the genome.
Several comparison measures have been
devised that measure the difference/sim-
ilarity between any given pair of species.
For example, Snipen and Ussery (2010)
devised the Manhattan distance, where
the distance between species i and k is:

n
Dy = (W) 2 wj | My j — My |
=

where n is the number of orthology
groups identified between both species,
and w, is the weight of orthology group
j for all groups 1 to n. Distance values
(D,,) range from 0 to 1.

Another comparison measure is the
Jaccard coefficient method, which, in
contrast with the Manhattan distance,
calculates the gene-content similarity
between two species. The Jaccard coef-
ficient value, or JCV is calculated by
the ratio of common orthology groups
divided by the total number of orthology
groups present in species A and B:

|A N BJ

cV =
SV = AT Bl —1An B

Three issues arise when using both
of these methods. The first is whether to
take mutual gene absence into account
(where M. = M, = 0 for species i and
k) because this might skew the result. Is
it really meaningful to assign value to
something that doesn’t exist? In a sense,
by taking mutual gene absence into

account, we are presupposing what the
membership of the holobaramin is go-
ing to be. This is because the presence/
absence matrix defines the working set of
genes for a given holobaramin, for which
we wish to calculate species distance or
similarity. In turn, we can define the
holobaramin only by calculating these
distance/similarity values between spe-
cies. This problem is a tautology.

The second issue in determining spe-
cies distance via the Manhattan distance
measure is assigning weights to the indi-
vidual orthology groups. This is perfectly
valid but requires a priori knowledge of
which groups are more or less important,
which could be difficult due to the fact
that the genome is made up of thousands
of genes, many of which might not have
been annotated yet.

A third issue is two or more genes
corresponding to the same orthology
group in one species as compared to only
one copy in another species. This might
occur if multiple paralogs in one species
maps to a single gene in another species.
When defining the presence/absence
matrix, this means we would have to
decide whether to add extra columns for
the surplus orthology groups.

Other algorithms take gene order
into consideration. This way, hypo-
thetically, two species or strains with
identical gene content may have a less
than 100% similarity value, in that dur-
ing speciation some of their genes may
have been rearranged in their genome
(i.e., chromosome segment inversion).

It would also be useful to measure
the degree of gene loss within the ho-
lobaramin. The pan-genome (PG) de-
scribes the complete set of genes across
all the members of a holobaramin. The
pan-genome would theoretically repre-
sent the genome of the archebaramin
before any gene loss subsequent to the
Fall. Within the pan-genome, core genes
are those genes that occur in the genome
of every single species. Shell genes are
genes that occur in the genomes of the
majority of the species, whereas cloud

genes are genes that are specific to
only the genomes of a small number of
species and take part in physiological
processes that are specific to certain
species—for example ones that produce
special secondary metabolites.

Two related parameters can be
calculated that measure how intact a
genome is after gene loss. In other words,
italso measures the degree of erosion the
pan-genome has gone through after the
Fall. One is the pan-genome quotient
(PGQ), which is equal to the ratio of
the number of core genes in the pan-
genome to the total number of genes in
the pan-genome:

n
i=1 Gl

PGQ = =1t
°=ura

where n is the number of species in a
given holobaramin, and G, represents
the set of genes in species i. The PGO
value can range from 0 to 1. A value
of 0 means the pan-genome has com-
pletely eroded and no core genes exist
in the holobaramin. A PGQ of 1 means
all genes are intact and no genes have
eroded from the pan-genome.

The completeness index (CI) also
measures pan-genome erosion:

1'7.

cl = 2= Z
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where n is the number of species in the
holobaramin, and G, represents the set
of genes in species i. The numerator of
the CI sums the total number genes
in all species that are members of the
holobaramin. The denominator is the
number of species times the size of
the pan-genome. Since we assume all
genomes of a given holobaramin are
derived from the archebaramin and the
genome of the archebaramin represents
the intact pan-genome before the Fall,
before any gene loss had occurred, the
Cl measures the average genome intact-
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ness within a given holobaramin. Similar
to the PGQ, the CI can take a value
between 0 and 1, where 0 corresponds
to a pan-genome that has completely
eroded with no core genes left, and 1 cor-
responds to a completely intact genome
with no genes having been eroded from
the pan-genome.

We should expect that if we already
have assigned several species to a given
holobaramin, the PGQ and the CI
should not decrease too drastically with
the addition of any new species. If it does,
then it may be a sign that that species is
not a member of the holobaramin.

As a result of this step, we should get
a square matrix of distance/similarity
values for all species pairs, from which
we calculate the membership of differ-
ent baramins.

Clustering species into haramins
hased on gene similarity
The JCV method described in this paper
uses the default clustering algorithm
(the “complete” method) used by the
heat map function in R for defining
and displaying the members of differ-
ent baramins in a given data set as well
as k-means clustering. Other cluster-
ing methods in R include partitioning
methods, such as k-means clustering,
and hierarchical agglomerative methods,

such as Ward’s method.

Molecular Genetic
Baraminology Studies
Using the JGV Method

Methodology
The JCV method (O’Micks, 2016;
Yaugh, 2016; O'Micks and Lightner,
2017) implements molecular genetics-
based baraminology classification in
the following steps. First, the researcher
downloads the complete proteome
for each species under study. Fach
individual species has all of its protein
sequences in a multifasta file. Protein
sequences may be downloaded from

the NCBI database; however, these
proteomes may not be complete. The
UniProt database (http://www.uniprot.
org/proteomes/) contains proteomes
with high-quality sequences for species
with completely sequenced genomes but
does not have information on as many
species as the NCBI database.

Attention must also be paid to
whether it is possible to include non-
coding (that is, now inactive) protein
sequences in the proteome of a given
species in the analysis. Leaving out such
noncoding proteins from the analysis
may skew the results.

Next, the OrthoMCL algorithm
(Li et al., 2003; Fischer et al., 2011) is
used to assign the individual protein
sequences of a proteome to existing
orthology clusters. The online version
of orthoMCL (http://orthomcl.org/or-
thomecl/proteomeUpload.do) can also
be used to upload these proteome files
in order to complete this step. Afterward,
the result of the OrthoMCL algorithm
is retrieved. All orthology group IDs for
all species is then combined into a large
list, which is used for the JaccardClus-
ters script.

The R script is available at https:/
github.com/jeanomicks/JCV. Version
2 (JaccardClusters2.R) of the script
uses k-means clustering to estimate the
baramins from the data (estimates may
vary per run). The new version also
outputs baramin membership as well as
statistics for each baramin. The output
of this algorithm is the similarity matrix,
a .noa and .sif file, which can be used
in Cytoscape for downstream analysis,
as well as a heat map that displays the
JCVs for all species pairs (visualizing
the similarity matrix values). Lighter
colored pixels correspond to higher
JCVs close to 1 (similarity between
two species), whereas darker colored
pixels correspond to JCVs closer to
0 (dissimilarity between two species)
on the heat map. Since the heat map
function uses a clustering algorithm, it
visualizes different clusters of species

that are similar to each other based on
their JCVs.

A boxplot can be drawn comparing
the mean JCV and the JCV range for all
species pairs within a baramin, as well as
between each member of the baramin
and every other species. This illustrates
the defining principle of baraminology —
showing continuity within a baramin
and discontinuity with all other species
outside of the baramin. Ideally, these two
ranges of JCVs should separate well from
one another. The best-case scenario is
when the intrabaraminic JCVs have a
narrow range with high values and the
extrabaraminic JCVs also have a narrow
range with low values. The discordance
between intrabaraminic JCVs and
extrabaraminic JCVs can be measured
by a p-value, which is the result of the
Student’s t-test.

Test case on 26 fungal species

So far, the JCV method has been
implemented in three baraminology
studies in Archaea, Bacteria, and Insects,
representing the three main domains
of life. We also applied the algorithm
to a set of 26 fungal species studied by
Dutilh et al. (2007). These included
22 Ascomycota, 3 Basidiomycota and
the Microsporidium Encephalitozoon
cuniculi as an outlier. These species in-
clude single-celled yeast species as well
as filamentous fungi. A list of these spe-
cies can be seen in Table 3, along with
the number of proteins they each have,
the number of OrthoMCL orthology
groups that these proteins were assigned
to, and the putative baramin ID that
they belong to.

Fungi are not specifically mentioned
during the days of Creation; however,
since we know that many fungal spe-
cies form symbiosis with certain plant
species, such as in mycorrhiza, we can
speculate that fungi were created on Day
3 of Creation, along with plants (Loucks,
2009). One can also reason that if plants
and animals were created according to
their kind, then so were fungi. Since
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fungi, along with plants do not have liv-
ing souls, they do not classify as proper
living beings. Fungi may have played a
saprophytic role in the original created
world in recycling nutrients.

These researchers used a COG-
based method (Tatusov et al., 1997),
which resulted in 6,488 unambiguous

triangle-based triOGs. Each triOG

lists all the proteins of all species that it
belongs to. After transforming the data,
we were able to supply the list of species
and ortholog pairs to the JaccardClusters
script. The heat map that displays the
species relationships between the 26
fungal species can be seen in Figure 1.
The intrabaraminic JCV range for all
three baramins is visibly higher than that

of the extrabaraminic JCV range (JCV
between species from the given baramin
and all other species; Figure 2).

It is interesting to observe how the
size of the intersect and the union of
orthologs change as more and more
species are added together from a given
baramin. After selecting an initial “seed”
species for a given baramin, the inter-

Table 3. List of 26 fungal species from Dutilh et al., 2007, the number of proteins, orthology groups, and baraminic clas-

sification
Classification 1 Classification 2
Species Proteins | Orthology groups (heat map) (k-means)
Ashbya gossypii 4720 2867 3 3b
Aspergillus fumigatus 9926 4038 1 1
Aspergillus nidulans 9541 3769 1 1
Candida albicans 11904 2399 unassigned 3b
Candida glabrata 5272 2856 3 3b
Cryptococcus neoformans 5882 1745 2 2
Debaryomyces hansenii 6896 2570 unassigned 3b
Encephalitozoon cuniculi 1918 412 outlier outlier
Fusarium graminearum 11640 4461 1 1
Kluyveromyces lactis 5331 2976 3 3b
Kluyveromyces waltii 5230 2920 3 3b
Magnaporthe grisea 11109 3904 1 1
Neurospora crassa 10620 3858 1 1
Phanerochaete chrysosporium 11777 1942 2 2
Saccharomyces bayanus 4966 2737 3 3b
Saccharomyces castellii 4690 2656 3 3b
Saccharomyces cerevisiae 6702 3028 3 3b
Saccharomyces kluyveri 2992 1876 unassigned 3b
Saccharomyces kudriavzevii 3813 2026 unassigned 3b
Saccharomyces mikatae 3100 1640 unassigned 3b
Saccharomyces paradoxus 8955 2962 3 3b
Schizosaccharomyces pombe 4990 2098 unassigned 3b
Stagonospora nodorum 16597 4216 1 1
Trichoderma reesei 9997 4212 1 1
Ustilago maydis 6522 1701 2 2
Yarrowia lipolytica 6666 2392 unassigned 3b
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sect of orthology groups common to all
species slowly decreases asymptotically,
until it reaches a plateau, as can be
seen in Figure 3 (here the number on
the x-axis shows the number of species
already added to the seed species). This
plateau shows the number of orthology
groups that make up the core genome
of a given baramin. A sharp decrease
in the intersect can be observed after
adding a species from baramin #2 to
the seven species in baramin #1. Also,
there is a sharp drop in the orthology
group intersect, the PGQ, and the CI
once a species from another baramin
(as can be seen in Figure 4) is added to
the working baramin (at eight species
on the x-axis, since Pezizomycotina has
seven species in its membership). This
is because the set of core genes differs
between two individual holobaramins,
and their overlap is smaller than the set
of core genes from either holobaramin.

There are at least three putative
baramins represented on the heat map,
as listed in Table 3. The statistics for
these three groups are shown in Table
4. The first, stricter classification of the
third baramin includes only Ashbya gos-
sypii, Candida glabrata, Kluyveromyces
lactis, Kluyveromyces waltii, Saccharo-
myces bayanus, Saccharomyces castellii,
Saccharomyces cerevisiae, and Saccharo-
myces paradoxus. Seven other species are
unassigned, namely Candida albicans,
Debaryomyces hansenii, Saccharomyces
kluyveri, Saccharomyces kudriavzevii,
Saccharomyces mikatae, Schizosaccha-
romyces pombe, and Yarrowia lipolytica.
K-means clustering includes these seven
species along with the previous eight
species to form a baramin with 15 spe-
cies. However, this way the mean JCV
of the third baramin drops from 0.86
to 0.65 and the p-value is much higher
at 7.5x10* as opposed to 3.1x10%, al-
though statistically still rather significant.
Thus there is no significant reason in not
expanding the third group to include all
15 species. The third baramin, including
only eight species, also has a higher PGO

and CI value than the same baramin
including 15 species. However, since the
p-value for 15 species within the third
baramin is also statistically significant,
we can state that the third baramin is
made up of 15-member species.

This third, large-sized baramin
corresponds to the subphylum Saccha-
romycotina, which includes the genera
Ashyba, Candida, Kluyveromyces, and
Saccharomyces and is considered to
be monophyletic on evolutionary trees
(James et al., 2006). The seven spe-
cies in the first baramin belong to the
subphylum Pezizomycotina. The three
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species in the second baramin belong
to separate subphyla (Agaricomycotina
and Ustilagomycotina). This nu
species is too small to say whethcf-fhey -
form a single holobaramin. \ ;
The reason that three Saccharomyces
species, S. kluyveri, S. kudriavzevii, and
S. mikatae show somewhat lower JCVs
to the other Saccharomyces species is
because their genomes are incomplete
(Cliften et al., 2003; Scannell et al.,
2006). Table 3 shows that besides the
outlier species, Encephalitozoon cu-
niculi, these three species have the low-
est number of proteins in their genome.
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Figure 1. Heat map of JCVs for 26 species of fungi based on the Jaccard Coef-
ficient Method. Lighter colors denote higher JCVs, closer to 1, whereas darker

colors denote lower JCVs, closer to 0.
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Figure 2. Box plot for four different baraminic classifications of 26 fungal species.

1: White—intrabaraminic and extrabaraminic JCVs of Pezizomycotina, 2: Light
gray—intrabaraminic and extrabaraminic JCVs of Agaro/Ustilagomycotina, 3a:
Dark gray— intrabaraminic and extrabaraminic JCVs of Saccharomycotina (with
only 8 species), 3b: Black—intrabaraminic and extrabaraminic JCVs of Saccha-

romycotina (with 15 species).

As an outlier, Encephalitozoon cuniculi
belongs to a different phylum than
Ascomycota and Basidiomycota. The
classification of fungi is in constant flux.
Apparently, in fungi, the holobaramin
may even reach the level of subphylum,
as opposed to animals and plants, but
further study is needed.

Discussion

This work has reviewed a recent statisti-
cal phylogenomics-based baraminology
method that has been used on three
data sets covering bacterial, Archaea,
and eukaryotic species, and newly on a
fungal data set. This method could po-
tentially be used in more baraminology
studies in a variety of different species.
The method apparently works both in

unicellular and multicellular organisms.
However, comparisons of results from
genetic and morphology-based barami-
nology studies must be made to validate
our results and increase our confidence
that our classification is correct.

One of the main arguments against
using genetic data in baraminology is
that it does not accurately translate to
morphological characterizations (Wood
and Murray, 2003). However, since the
genotype determines the phenotype, itis
precisely changes in the genome of the
archebaramin that leads to speciation
within a baramin. In other words, muta-
tions in the genome of the archebaramin
lead to speciation during the life history
of the holobaramin. Furthermore, with
quickly accumulating genomics and pro-
teomics data, species sets with available

proteomics data of any kind may be put
together, provided that a complete data
set is provided.

One challenge with the method is
providing enough, high quality data.
Based on a baraminology study of 107
insects (O’Micks and Lightner, 2017), if
the number of proteins within a group
of species varies too much, some spe-
cies might not fall within their proper
baramin. Another problem is if there
are many short protein sequences for a
given species, the ortholog algorithm
might reject them (as is the case in
the OrthoMCL algorithm), thus fewer
orthologs are identified for a given spe-
cies and its JCVs with other members of
its baramin will be low. Therefore the
species will not cluster well enough. In
addition, different orthology algorithms
might give different ortholog classifica-
tions. Furthermore, the present algo-
rithm counts multiple members of the
same orthology group only once.

An important issue is the selection
of a cutoff JCV that could serve as an
indicator as to whether two species be-
long to the same baramin. One would
think, intuitively, that species within
a baramin would have a high number
of common genes. A commonsense
speculation could be that at least half of
all genes should be common between
any two species within a baramin (JCV
> 0.5). However, as in the case of
bacteria and Archaea (O’Micks, 2016;
Yaugh, 2017), the average JCV within
a baramin can be quite low, even as low
as 0.19 as in certain Ascoviridae, and
0.45 in some methanogenic Archaea.
This is due to the high rate of HGT in
these single-cell organisms. Therefore,
as of yet, no certain JCV cutoff can be
set in stone to differentiate between
species; rather, the cutoff depends on
the biology of the given group of species
under study. A good way to determine
baramin membership is by monitoring
the gene intersect and the PGQ and
CI values, which gives us a picture of
the size of the core set of genes (the
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Table 4. Characteristics of the three fungal holobaramins from Dutilh et al., 2007.
Mean JCV

Baramin Species | JCVistdev | range PGO CI p-value
Pezizomycotina 7 0.69+0.05 0.59-0.79 | 0.38 (2001/5295) | 0.77 (28458/37065) | 5.1x10%
Agaro/Ustilagomycotina 3 0.57+0.02 0.56-0.6 | 0.42(1070/2525) 0.71 (5388/7575) 5.2x10%
Saccharomycotina 8 0.86+0.04 0.79-0.96 | 0.62 (2022/3243) | 0.89(23002/25944) | 3.1x10%
Saccharomycotina 15 0.65+0.15 0.35-0.96 | 0.11 (399/3694) 0.64 (35611/55410) (0

pan-genome) of a given baramin. For
example, in the case of the Pezizomy-
cotina, we see that the gene intersect,
PGQ, and CI decreases asymptotically,
which implies the presence of a core
set of genes within the pan-genome of
the holobaramin. This is because since

these genes are present in all species
in the baramin, this set of core genes
cannot decrease any farther. When core
gene sets from two different baramins
are compared with each other, the
overlap between these two gene sets is
smaller than either core gene set. This
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Figure 3. Changes in the number of genes in the intersect (above) and union
(below) of increasing numbers of added species from the Pezizomycotina bara-
min, after which species from the Agaro/Ustilagomycotina baramin were added

at n=6 species.

is because these sets of core genes are
responsible for the bauplan for two
different kinds of organisms. However,
after adding a seventh species from the
Agaro/Ustilagomycotina baramin, this
trend breaks. The intersect drops from
2001 genes to 1050, almost half (Figure
3). The drop in PGQ is from 0.38 t0 0.2,
also almost half. The drop in Cl is less
pronounced; from 0.77 to 0.71 (Figure
4). PGQ and CI values were also cal-
culated for the five holobaramins that
were predicted in the study on insects
(O’'Micks and Lightner, 2017). As we
can see, similar PGQ and CI values
occur for both fungi and insects.

As with other baraminology methods,
selecting the proper set of species is also
important. If the number of species
being examined is either too small, or
the number of sampled holobaramins
is too large, holobaramins might go
undetected or might not be able to be
clearly defined with too small a member-
ship. This was the case in cluster #2 in
the fungal baraminology analysis in this
paper, which had only three members,
or several small groups of NCLDVs
with three members or less (O’Micks,
2016). In such cases, if a holobaramin
is represented by only a small number
of species (two or less), then it is impos-
sible to know whether these two species
belong to the same baramin or different
ones. The addition of extra species is
needed to determine this, whether the
additional species all form one group,
or whether they group with one or the
other (initial, seed) species.
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Table 5. Characteristics of the five insect holobaramins from O’Micks and Lightner, 2017.

Mean JCV JCV
Baramin Species + stdev range PGO Cl p-value
Diptera I (mosquitos) 6 0.74£0.05 0.66-0.84 0.48 (6030/12597) 0.76 (57388/75582) 1.5x10%
Diptera II (flies) 33 0.89+0.06 0.69-0.98 0.22 (2725/12564) 0.7 289797/414612) 0.0
Auchenorrhyncha 7 0.76+0.04 0.71-0.84 0.5 (5627/11366) 0.72 (57127/79562) 9.8x1012
Hymenoptera 42 0.86+0.03 0.75-0.94 0.37 (4751/12849) | 0.62 (335369/539656) 0.0
Lepidopterans 10 0.71+0.16 0.45-0.9 0.48 (6030/12597) 0.76 (57388/75582) 5.2x10°
Materials and Methods

The JaccardClusters2.R script was
further developed in R version 3.2.2.
The script is available at github.com/
jeanomicks/JCV. Figures 2-4 were
made in R version 3.2.2. The orthol-
ogy data set for 26 fungal species was

downloaded from the supplementary
data from Dutilh et al. (2007).
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