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Introduction
Working through old copies of Creation Research Society Quar-
terly (in preparation for an article on the history of creationary 
astronomy) has been a fascinating exercise. The quantity and 
quality of astronomical data has increased greatly since the 
Quarterly’s inception in 1964, and the nature and sophistica-
tion of creationary argumentation has changed accordingly.

In 1979, G. Russell Akridge published a CRSQ article 
arguing for the in-transit creation of light from distant stars 
(Akridge, 1979). Indeed, the article’s title asserts—quite 
boldly—that in-transit creation of light is “more than a pos-
sibility,” and the article itself claims that energy conservation 
actually mandates this conclusion. However, subsequent 
issues of the Quarterly seem to contain neither response to 
nor evaluation of the argument; the lone exceptions are a 
brief mention by Morton (1982)—who lauds the paper as 

“brilliantly argued”—and another by Williams (1990)—who 
describes it as “a very interesting paper.”

Whether brilliantly argued or not, the paper is clearly of 
interest because of what is at stake. If, as Akridge contends, the 
laws of physics demand in-transit creation of light, then the 
light-travel time issue simply dissolves—as does (arguably) the 
fundamental reality of most of astronomy. If, on the other hand, 
it turned out that a straightforward calculation could falsify 
Akridge’s claim, then the article’s appearance in CRSQ (after 
peer review) would be a potential embarrassment to those of 
us who believe in a recent creation (albeit a minor embarrass-
ment after the lapse of forty years)—in which case, the proper 
recourse would be to correct the invalid claim. The occasion 
would also serve as a reminder of the need to exercise care in the 
arguments we frame, lest we inadvertently give secularists an 
opportunity to mock the truth. (They will indeed mock regard-
less—for naturalism is fundamentally presuppositional—but 
we should not by our own negligence hand them additional 
occasions to do so.)
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It is thus worthwhile, even after the passage of four decades, 
to consider the validity of Akridge’s argument. If it is valid, 
then it is worth rescuing from the obscurity into which it has 
fallen. If, on the other hand, the argument is invalid, then it 
is worthwhile to use its flaws as an occasion for self-reflection. 
In pointing out its flaws, the goal is not to disparage a brother 
in Christ (who is now with the Lord) but rather to pursue the 
truth and to follow the biblical mandate to test all things (1 
Thessalonians 5:21).

Thus, in the following sections we first summarize Akridge’s 
argument and present some preliminary considerations. We 
then perform a basic electrodynamic calculation to evaluate 
the argument’s merit, and we close with some reflections on 
the importance of self-evaluation to our community. This article 
assumes some familiarity with classical electromagnetic theory; 
Appendix A provides a brief review of Maxwell’s Equations and 
the Dirac delta function. In addition, this article does not seek to 
address (or take a position on) in-transit creation of light per se; 
its focus is specifically Akridge’s argument and its implications.

Overview of the Argument
Akridge’s argument is easy to state: after the initial creation of a 
charge, its electric field E must propagate outward at the speed 
of light. Thus the field will occupy an increasing volume of 
space with the passage of time. However, the energy U of an 
electromagnetic field depends on E2 + B2, integrated over all 
space (B being the magnetic field strength, which in this case 
vanishes). Using the standard expression for the electric field of 
a static point charge, Akridge argues that as the field expands 
and occupies more volume, its total energy will increase as 
well; therefore he claims that the expanding field violates 
energy conservation.

Hence, Akridge concludes that the electric fields of all 
charged particles must have been created at the same instant 
as the particles themselves; furthermore, these fields (rather 
than expanding) must at the moment of their creation have 
extended throughout all of space. Thus, since light consists of 
electric and magnetic fields, the light of all luminous bodies 
must have been created (throughout all of space) at the instant 
the bodies themselves were created. Therefore, he claims, the 
light from distant stars was created in transit, and the long 
ages inferred from distant starlight are not problematic to a 
young-earth position.

Evaluation

A priori considerations
It should be clear at the outset—before performing any cal-
culations—that something is wrong with this argument. For 

instance, pair production (of an electron-positron pair from a 
photon, γ → e–+e+) is a common occurrence in high-energy 
physics; it regularly creates positive and negative charges de 
novo (while conserving net charge). And though the fields 
of the new particles will almost completely cancel out (their 
charges being equal and opposite), the cancellation will not 
be perfect at any time after their creation, simply because the 
particles do not occupy the same positions in space. Hence, 
if Akridge’s argument were sound, these newly created fields 
would simultaneously spring into existence throughout all of 
space—whereas in reality, the fields propagate with the speed 
of light.

In addition, if energy conservation requires simultaneous 
creation of electric fields throughout space, then energy conser-
vation is inconsistent with special relativity. For, by relativity of 
simultaneity, the field creation can be simultaneous in only one 
set of inertial frames, and thus (were Akridge correct) energy 
could be conserved in those frames only. But in fact Maxwell’s 
equations provide a Lorentz-invariant theory which guarantees 
conservation of energy in all inertial frames.

Furthermore, the argument makes some significant as-
sumptions. For instance, even if we grant the simultaneous 
creation of these fields, on what grounds would we expect 
them to oscillate, as they must do in order to constitute light? 
Why would the fields not remain static until the motion of 
the charges disturbs them? Or, if the fields are not static, why 
would they not be randomly fluctuating—given that they are 
causally disconnected from the charges that (somehow) are 
responsible for generating them? And even if (somehow) the 
fields were to oscillate and propagate as light, why would this 
light encode an entire coherent virtual history?

These problems signal the existence of a fundamental 
flaw in the argument itself; we now turn to an examination 
of that flaw.

Calculating the electric field
Akridge’s error lies in his equation for the electric field of a 
non-static charge. He begins with the unobjectionable fact 
that the strength of the electric field r units distant from a static 
charge q is E(r)=q/4πϵ0r2 (where ϵ0 is the permittivity of free 
space). Akridge then assumes that the field of a newly created 
charge is exactly like the field of a static charge except for be-
ing truncated (after time t) at a radius ct (where c is the speed 
of light). In other words, he assumes that the field strength at 
time t after the creation of the charge q is 
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Equation 1 is the prescription employed by Akridge (in the 
fourth paragraph of his article) for the electric field of a newly 
created charged particle. If this prescription is correct, then 
the remainder of his argument follows.

However, reference to standard electrodynamics texts 
quickly reveals that Equation 1 is not, in fact, the correct pre-
scription for the electric field of a varying charge. Although 
the electric potential V does behave in such a manner, the 
electric field E does not. (See, for instance, Griffiths, 1999, pp. 
423–424, or other standard electrodynamics texts.) Ironically, 
Akridge’s own Appendix A demonstrates that the expression in 
Equation 1 describes not the creation of a simple point charge 
but rather the outward propagation of a shell of charge. He 
does not seem to notice the contradiction between this result 
and the rest of his paper.

To calculate the true field of a varying point charge, we 
should instead begin with a time-dependent charge density 
ρ(r,t); we can then calculate the resulting time-dependent 
potential V(r,t), the gradient of which yields the electric field 
E(r,t). Alternatively, one could use Jefimenko’s equations 
(see, e.g., Griffiths, 1999), which directly link the electric 
and magnetic fields to the charge configuration ρ(r,t) and 
current density J(r,t). It is this approach which we here take. 
Jefimenko’s equation for the electric field is
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where µ0 is the permeability of free space. 

6 

Equation 1 is the prescription employed by Akridge (in the fourth paragraph of his article) for the electric 

field of a newly created charged particle. If this prescription is correct, then the remainder of his argument 

follows. 

However, reference to standard electrodynamics texts quickly reveals that Equation 1 is not, in fact, the 

correct prescription for the electric field of a varying charge. Although the electric potential V does behave 

in such a manner, the electric field E does not. (See, for instance, Griffiths, 1999, pp. 423–424, or other 

standard electrodynamics texts.) Ironically, Akridge’s own Appendix A demonstrates that the expression in 

Equation 1 describes not the creation of a simple point charge but rather the outward propagation of a shell 

of charge. He does not seem to notice the contradiction between this result and the rest of his paper. 

To calculate the true field of a varying point charge, we should instead begin with a time-dependent charge 

density ���, ��; we can then calculate the resulting time-dependent potential ���, ��, the gradient of which 

yields the electric field ���, ��. Alternatively, one could use Jefimenko’s equations (see, e.g., Griffiths, 

1999), which directly link the electric and magnetic fields to the charge configuration ���, �� and current 

density ���, ��. It is this approach which we here take. Jefimenko’s equation for the electric field is 

���, �� � 		 1
4πϵ� 	�����

�, ���
|� � ��|� �� � ��� � �����, ���

�|� � ��|� �� � ��� � ����, ���
��|� � ��|� �

���,	 (2) 

where the retarded time �� � � � |� � ��|��  enforces the finite propagation speed of disturbances in the 

field. The corresponding equation for the magnetic field is 

���, �� � 		 ��4π	�� ���
�, ���

|� � ��|� �
�����, ���
�|� � ��|� �

� � ��
|� � ��| �

���,  (3) 

where µ0 is the permeability of free space. 

 (2)

where the retarded time tr=t–|r–rN |/c enforces the finite propa-
gation speed of disturbances in the field. The corresponding 
equation for the magnetic field is
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where µ0 is the permeability of free space.
So let us begin by modeling the creation of a point 

charge q at the origin. We shall work in the rest-frame of the 

charge so that the current density J—and thus, by Equation 
3, the magnetic field—vanishes. (See below for additional 
discussion of currents and magnetic fields in this situation.) 
We shall also avoid unnecessary discontinuities by positing 
that the creation of the charge occurs, in a linear fashion, over 
the time span –ϵ<t<ϵ ; later, if we wish, we can consider the 
limit as ϵ approaches zero. Thus, the time-dependent charge 
distribution giving rise to the electric field is (see Figure 1)
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where δD(r) is the three-dimensional Dirac delta function (see 
Appendix A). Next, application of Equation 2 to the distribution 
in Equation 4 yields (see Appendix B for details) the following 
electric field:

Figure 1. Left panel: The rise of a point charge at the 
origin (Equation 4); to avoid discontinuities, we assume 
a linear rise from 0 to q over a time period of 2ϵ. Right 
panel: The magnitude E (Equation 5) of the electric field 
at a given time t, as a function of distance from the origin. 
The dashed line shows the electric field of a static charge; 
as time increases, the “spike” about r=ct propagates to the 
right and diminishes in size so that the field approaches 
the static limit. Compare this—the true field configura-
tion—with Equation 1, which is assumed by Akridge (1979) 
and lacks the spike.

–ϵ
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energy
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where δD(r) is the three-dimensional Dirac delta function (see Appendix A). Next, application of Equation 2 
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If we now compare Equation 5 to the (incorrect) prescription of Equation 1, we see that the essential 

difference is a “spike” in the field (see Figure 1) produced during the charge creation. It is this spike (from 

the ��  term in Equation 2, and absent in Akridge’s analysis) which maintains conservation of energy once the 

charge has been created. 

We can explicitly verify energy conservation by calculating the total electromagnetic energy 
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instance, one could postulate (to maintain spherical sym-
metry) that J(r,t)=–qr ̂ /8πϵr2 during the time –ϵ<t<ϵ, so that 
L · J gives us ρ̇(r,t) matching Equation 4 (for all times t and 
points r). For this scenario, the reader can verify (after rather 
tedious integration) that the anomalous term in Equation 7 
disappears, although Equation 5 changes significantly due to 
the simultaneous currents filling all of space. Interestingly, in 
this case also the magnetic field turns out to vanish, with the 
J and dE/dt terms in Equation A.5 cancelling out—and thus 
we remain consistent with Maxwell’s Equations.

If on the other hand one wishes to model charge creation 
per se (without recourse to any such currents), then there are 
at least two options. First, it is possible that when God spoke 
charge into existence, He chose not to maintain local charge 
conservation. Indeed, since God ceased His creative work 
after Day 6, we cannot assume that today’s conservation laws 
(describing His ongoing work of providence) necessarily apply 
to His work of creation. In such a case, modeling the event 
would require a self-consistent formulation of electrodynamics 
without local charge conservation. It is unclear what form such 
a theory would take: on the quantum level, one could perhaps 
introduce appropriate operators for creation/annihilation of 
charge, while taking care to account for gauge invariance, 
particle spin, etc.; on the classical level, one could perhaps 
adapt Maxwell’s equations to a non-trivial topology and model 
the introduction of charge through some sort of wormhole. In 
either case, the work required is well beyond the expertise and 
inclination of the author. Nor would the utility of such a theory 
(or its amenability to empirical test) be at all clear.

The second option (perhaps preferable on aesthetic 
grounds) is that when God first spoke charge into existence, 
He did so using a process similar to that by which He upholds 
the universe today—namely, by always producing equally- and 
oppositely-charged pairs of particles. Two examples are pair 
production (γ→e–+e+) and beta decay (n→e–+p++ν ̅ e ). Since 
the Universe is (to our knowledge) electrically neutral, it is 
probable that global charge conservation has existed from the 
beginning, and thus it is not unreasonable to suppose that local 
charge conservation has held true as well.

Neither option, however, requires in-transit light-creation. 
If God utilized some sort of pair production consistent with 
Maxwell’s Laws, then those laws insure both energy conserva-
tion and the propagation of field disturbances at the speed of 
light. If God utilized some other sort of method, then He would 
have been free either to create light in transit or not.

Conclusions
Akridge (1979) argues that conservation of energy requires in-
stantaneous creation of universe-wide electric fields whenever 
electric charge is created; he thus concludes that light from 

distant stars was created in transit. We have demonstrated that 
this argument is fundamentally flawed, on both a priori and 
electrodynamical grounds. In particular, Akridge employs an 
incorrect prescription for the time-dependent electric field; in 
contrast, the correct prescription satisfies energy conservation 
automatically.

However, we should note that this argument, with its flaws, 
provides our community an opportunity for self-reflection. 
Given the intervening four decades and the relative obscurity 
of the argument, we have the rare advantage of being able to 
perform this self-reflection with minimal risk of personal of-
fense. What conclusions, then, can we draw from this incident 
in the history of creationism?

We first note that Akridge’s argument seems never to have 
gained much traction within creationary circles. Indeed, apart 
from the two mentions noted above, the argument seems to 
have languished in relative obscurity. If this fact indicates 
skepticism among the CRS membership concerning the argu-
ment’s merits, then we have demonstrated that the unease was 
well-warranted. It seems likely that many members sensed its 
problematic nature, and thus our history gives us a positive 
example of caution in handling arguments that do not “sound” 
plausible, even if we are unable immediately to pinpoint the 
precise nature of that implausibility.

However, we must also note that the argument did pass peer 
review and appeared in CRSQ, arguably the flagship journal 
of creation science. On the one hand, we should make full al-
lowance for the acute difficulty of finding willing and qualified 
reviewers during the early decades of the Creation Research 
Society. On the other hand, it seems unlikely that the CRS at 
that time included absolutely no members conversant enough 
with electrodynamics to pinpoint these flaws. In any case, and 
for whatever reason, neither the reviewer(s) nor anyone within 
the 1979 membership seems to have pointed them out.

To take note of this failure is not to suggest that individual 
creationists are somehow responsible for other creationists’ 
errors, much less errors decades in the past. Nor is today’s orga-
nization to be blamed for a forty-year old misstep. Nevertheless, 
the error under discussion is by no means minor: the argument 
proceeds from an unambiguously false electrodynamic premise, 
and peer review is intended to detect precisely this type of er-
ror. Thus, remembering the aphorism about those who forget 
history, it is worthwhile to consider—not what went wrong 
in 1979, but rather how we could prevent (or at least quickly 
redress) a similar error today.

The answer must ultimately involve our organizational 
responsibility to self-regulate, a responsibility which inheres in 
no one member exclusively but in the community as a whole. 
What then falls to each of us (as members of the community) is 
to thoughtfully consider, evaluate, and interact with the articles 
and arguments which lie within our own individual areas of 
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expertise. Sometimes doing so is straightforward. At other times, 
it can be difficult to critique ideas which one feels ought to 
be true. Nevertheless, “the first to present his case seems right 
until another comes forward and questions him” (Proverbs 
17:19)—and we, rather than unbelievers, should be the first to 
raise such questions in a rigorous and yet constructive fashion.

Indeed, this is precisely what CRS has been doing for over 
five decades, and during that time there has been significant 
refinement in the quality (and scope) of creationary argumen-
tation in virtually all areas. We can be grateful for this growth 
in the caliber of the science published in CRSQ, and we can 
be even more grateful that, in the process, the organization 
has remained faithful to Scripture. Both of these blessings 
are the fruit of the selfless work of many CRS members and, 
especially, of the grace of God. But repeated reminders—of 
the importance of excellent science, accurate exegesis, and 
doctrinal fidelity—are wholesome, and the author hopes that 
this examination of Akridge (1979) can serve as another such 
reminder. Our faith in God’s Word will always incur ridicule 
from the unbelieving world, but we surely do not wish to invite 
such ridicule by our own failure to engage in critical think-
ing. In addition, we have a much greater motive for accurate 
argumentation, namely, the account we must each give to our 
Creator and Redeemer: “we make it our aim to please Him, for 
we must all appear before the judgment seat of Christ” (2 Cor-
inthians 5:9–10), and “each one’s work will become manifest 

… what sort of work each one has done” (1 Corinthians 3:13).
Thus it is incumbent upon us as a community—authors, 

readers, and reviewers (each within his own area of exper-
tise)—to subject our ideas to searching critique by carefully 
examining their assumptions and implications. To borrow 
biblical language, the more diligently we judge ourselves, 
the less likely it is that we shall be judged wanting. Thus, the 
flaws in this argument from a previous generation can serve 
as a wholesome stimulus for us today (including this author) 
to thoughtfully weigh the positions we take in defense of the 
biblical record—and to critique our own arguments as carefully 
as we critique others’.
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Appendix A 
Maxwell’s Equations and the Dirac Delta

This appendix provides a brief review of Maxwell’s equations 
and the Dirac delta function, employing SI units throughout. 
For a more comprehensive explanation, one can consult any 
standard electrodynamics text; the exposition of Griffiths (1999) 
is particularly lucid.

Electric and magnetic fields exert force on electric charges. 
The Lorentz force law describes this effect by specifying the 
force exerted on a small test charge q with velocity v by electric 
and magnetic fields E and B, respectively:

F=q(E+v×B). (A.1)

Note that these fields, like the resulting force, are vector quanti-
ties (in the mathematical sense).

Whereas the Lorentz force law describes the effect of fields 
on charges, Maxwell’s Equations describe the fields generated 
by the charges. Specifically, given a charge density ρ and a cur-
rent density J, one can write Maxwell’s Equations as follows:
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Next, the so-called Dirac delta function facilitates the application of Equations A.2–A.5 to point charges. 

The Dirac delta is not, strictly speaking, a function but rather a distribution (or, alternatively, a measure). 
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Next, the so-called Dirac delta function facilitates the ap-
plication of Equations A.2–A.5 to point charges. The Dirac 
delta is not, strictly speaking, a function but rather a distribu-
tion (or, alternatively, a measure). One can visualize it as an 
infinitely narrow and infinitely tall spike at the origin. Thus 
one can write (suggestively)
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Note that Equation A.7 requires Equation A.8 (or, better, Equation A.9 below) to render its meaning precise. 

One can also consider the Dirac delta to be the limit of Gaussian probability distributions with mean 0 and 

standard deviation approaching zero (as in Figure 2). 

The key property of a delta function is its ability to pick out one value from an integrand, so that for any 

function ���� we have 
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The three-dimensional Dirac delta function is simply the product of one-dimensional deltas: 
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so that 
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Appendix B Deriving Equations 5 and 7 

This appendix provides the derivation of Equation 5 from the charge distribution of Equation 4; it then 

provides the derivation of Equation 7 from Equation 5. 

Recall that the electric field for any configuration of charges and currents is given by the first of Jefimenko’s 

equations (Equation 2), which we reproduce here: 
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Note that Equation A.7 requires Equation A.8 (or, bet-
ter, Equation A.9 below) to render its meaning precise. One 
can also consider the Dirac delta to be the limit of Gaussian 
probability distributions with mean 0 and standard deviation 
approaching zero (as in Figure 2).

The key property of a delta function is its ability to pick 
out one value from an integrand, so that for any function f(x) 
we have

16 

� ����� �� � �.
�

��
 (A.8)

 

Note that Equation A.7 requires Equation A.8 (or, better, Equation A.9 below) to render its meaning precise. 

One can also consider the Dirac delta to be the limit of Gaussian probability distributions with mean 0 and 

standard deviation approaching zero (as in Figure 2). 

The key property of a delta function is its ability to pick out one value from an integrand, so that for any 

function ���� we have 

� �������� � �� �� � ����.
�

��
 (A.9)

The three-dimensional Dirac delta function is simply the product of one-dimensional deltas: 

����� � ����� � ����� � �����, (A.10)

so that 

��������� � ��� ��� � �����. (A.11)

  

Appendix B Deriving Equations 5 and 7 

This appendix provides the derivation of Equation 5 from the charge distribution of Equation 4; it then 

provides the derivation of Equation 7 from Equation 5. 

Recall that the electric field for any configuration of charges and currents is given by the first of Jefimenko’s 

equations (Equation 2), which we reproduce here: 

 (A.9)

The three-dimensional Dirac delta function is simply the 
product of one-dimensional deltas:

16 

� ����� �� � �.
�

��
 (A.8)

 

Note that Equation A.7 requires Equation A.8 (or, better, Equation A.9 below) to render its meaning precise. 

One can also consider the Dirac delta to be the limit of Gaussian probability distributions with mean 0 and 

standard deviation approaching zero (as in Figure 2). 

The key property of a delta function is its ability to pick out one value from an integrand, so that for any 

function ���� we have 

� �������� � �� �� � ����.
�

��
 (A.9)

The three-dimensional Dirac delta function is simply the product of one-dimensional deltas: 

����� � ����� � ����� � �����, (A.10)

so that 

��������� � ��� ��� � �����. (A.11)

  

Appendix B Deriving Equations 5 and 7 

This appendix provides the derivation of Equation 5 from the charge distribution of Equation 4; it then 

provides the derivation of Equation 7 from Equation 5. 

Recall that the electric field for any configuration of charges and currents is given by the first of Jefimenko’s 

equations (Equation 2), which we reproduce here: 

 (A.10)

so that

16 

� ����� �� � �.
�

��
 (A.8)

 

Note that Equation A.7 requires Equation A.8 (or, better, Equation A.9 below) to render its meaning precise. 

One can also consider the Dirac delta to be the limit of Gaussian probability distributions with mean 0 and 

standard deviation approaching zero (as in Figure 2). 

The key property of a delta function is its ability to pick out one value from an integrand, so that for any 

function ���� we have 

� �������� � �� �� � ����.
�

��
 (A.9)

The three-dimensional Dirac delta function is simply the product of one-dimensional deltas: 

����� � ����� � ����� � �����, (A.10)

so that 

��������� � ��� ��� � �����. (A.11)

  

Appendix B Deriving Equations 5 and 7 

This appendix provides the derivation of Equation 5 from the charge distribution of Equation 4; it then 

provides the derivation of Equation 7 from Equation 5. 

Recall that the electric field for any configuration of charges and currents is given by the first of Jefimenko’s 

equations (Equation 2), which we reproduce here: 

 (A.11)

Appendix B 
Deriving Equations 5 and 7

This appendix provides the derivation of Equation 5 from the 
charge distribution of Equation 4; it then provides the deriva-
tion of Equation 7 from Equation 5.

Recall that the electric field for any configuration of charges 
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(Equation 2), which we reproduce here:
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Taking the time derivative, we obtain
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Figure 2. The left-hand panel shows a series of Gaussian func-
tions (of unit area) converging to the Dirac delta, depicted 
in the right-hand panel. The Dirac delta “function” is zero 
everywhere except at the origin, where its value is infinite.
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We now must calculate two integrals, one involving ρ 
and the other involving ρ̇ , with both integrands evaluated at 
retarded time tr=t–|r–rN|/c. The Dirac delta function makes 
the integration straightforward and enforces the condition rN=0, 
so that tr=t–r/c. Thus we have
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With these integrals in hand, we can evaluate Equation 
B.1 as a function of distance at any particular time t. First, at 
distances r≥c(t+ϵ), there has not yet been enough time for 
the effect of the charge at the origin to propagate out to r, and 
we have
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Together, Equations B.6, B.8, and B.9 yield Equation 5: 
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This expression for ���� ��—along with the fact that the magnetic field vanishes by symmetry—allows us to 

calculate the net electromagnetic energy at any time t via Equation 6: 
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Proceeding, we have 
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Next, if c(t–ϵ)<r<c(t+ϵ), then the electric field at point 
r feels the effect of the growing charge and is in the “spike” 
portion of Figure 1:
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Finally, if r≤c(t– ϵ), the field is that expected for a static 
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With these integrals in hand, we can evaluate Equation B.1 as a function of distance at any particular time t. 

First, at distances � � ��� � ��, there has not yet been enough time for the effect of the charge at the origin 

to propagate out to r, and we have 
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This expression for ���� ��—along with the fact that the magnetic field vanishes by symmetry—allows us to 

calculate the net electromagnetic energy at any time t via Equation 6: 
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where ��	 is an arbitrary (positive) lower limit required for convergence of the integral. Continuing, 
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where ��	 is an arbitrary (positive) lower limit required for convergence of the integral. Continuing, 
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as in Equation 7. 
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where ��	 is an arbitrary (positive) lower limit required for convergence of the integral. Continuing, 
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as in Equation 7. 
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where ��	 is an arbitrary (positive) lower limit required for convergence of the integral. Continuing, 
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as in Equation 7. 
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where ��	 is an arbitrary (positive) lower limit required for convergence of the integral. Continuing, 
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as in Equation 7. 
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as in Equation 7.


