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Introduction
In 1993, Larry Vardiman of the Institute for Creation Research 
published an analytical model for the rapid post-Flood forma-
tion of a thick ice sheet within the 4,500 years since the Gen-
esis Flood (Vardiman, 1993, 1994, and 2001). Other creation 
researchers (Sherburn, Horsteymeyer, and Solanki, 2008) 
have used commercial software to model surging (short-term 
rapid advances) of glaciers. However, very little additional 

work has been done in this field by creationists, and creation 
research in this area lags secular research by about sixty years. 
In particular, there is a need for more sophisticated models for 
the rapid growth of post-Flood ice sheets, as well as a need to 
make predictions of annual layer thicknesses, to enable con-
trasts with the  predictions of secular ice sheet models. This 
paper is a modest first step in that direction. Because of the 
much smaller number of available creation researchers, it is 
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very important to clearly explain important concepts to future 
creation researchers in this field, so as to minimize the time 
needed for them to get “up to speed.” Writing this paper has 
been a useful exercise that has helped clarify my thinking on 
a number of issues, and I hope that it may serve as a tutorial 
or primer that enables future creation researchers to quickly 
grasp ice sheet basics and to avoid misconceptions. 

Ice Sheet Basics
Glaciologists often drill ice cores at geological features called 
ice divides. These features derive their name from the fact that 
ice on one side of the divide flows one way, and ice on the other 
side of the divide flows the other (Figure 1). Ice is deposited 
on the sheet in horizontal layers. Ice at the divide itself will 
flow neither to the right nor left, but will move straight down 
as additional layers are added, assuming no shifting of the ice 
divide during ice buildup. It is also possible for the ice to form 
a dome around the divide, so that ice flows radially outward 
from the divide, not just right and left. 

Since the underlying bedrock is fixed (here we ignore 
possible isostatic adjustments), a horizontal layer that reaches 
bedrock can no longer move downward; it can only become 
thinner with time. If no melting occurs at bedrock, the total 
number of annual layers will equal the number of years since 
the ice sheet began forming. However, identifying the true 
number of annual layers is not trivial, since multiple distinct 
layers may be deposited per year (Alley and Koci, 1988; Alley, 
1988). In fact, creation critic Bill Nye inadvertently highlighted 
why one cannot naively assume that each visible band in an ice 
core is an annual layer (Hebert, 2018a). The counting process 
has been described as an “art” that requires “trial and error” 
(Alley et al., 1997, pp. 26367, 26370). Hence uniformitarian 
glaciologists must make educated guesses about how many of 
these distinct bands should be grouped together and counted 
as a year. Unfortunately, these educated guesses are biased by 
long-age assumptions and circular reasoning (Alley et al., 1997, 
p. 26419; Oard, 2005; Hebert, 2014). 

It should be mentioned in passing that it may technically 
be a misnomer to say that these ice layers are “compressed.” 
Simple ice sheet models often ignore the variations in density 
due to the presence of bubbles in the uppermost parts of 
the ice (which is actually a combination of ice and granular 
snow called firn). The density of glacial ice is 917 kg/m3, and 
temperature and pressure variations at the bottom of a four-
kilometer-thick ice sheet will cause only slight increases in 
density (Cuffey and Paterson, 2010, pp. 12–13) to about 921 
to 922 kg/m3, a less than 1% difference. Hence, at most depths, 
the ice density will be very nearly constant, and the assumption 
of incompressibility (constant density and volume) is usually 
made (Paterson, 1980, p. 12).

Hence, in the absence of melting or ablation, the total 
volume of an ice layer remains constant over time. The layer 
becomes thinner, but it does so in such a way that the total 
volume of the layer remains constant, with a corresponding 
increase in the upper and lower surface area of the layer 
(Figure 2). However, this may be somewhat pedantic, as even 
experts sometimes refer to vertical “compression” of the ice 
(i.e., Cuffey and Paterson, 2010, p. 357).

Figure 1. An idealized ice divide. Note that ice on the left 
of the divide flows to the left, and ice on the right of the di-
vide flows to the right. Ice at the divide location must move 
straight down. Image courtesy of Michael J. Oard.

Figure 2. As more layers of ice are deposited at the site of the 
divide, the layers of ice become thinner, but in such a way 
that the total volume of each layer remains constant. Image 
courtesy of Michael J. Oard.
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Annual Layer Thicknesses: Creation  
versus Uniformitarian Expectations
Uniformitarian age-depth models for thick ice sheets often 
make the simplifying assumption that the height of the ice 
sheet is constant, or nearly constant (Cuffey and Paterson, 
2010, pp. 617–620). For instance, in his preliminary estimation 
of the amount of layer thinning in an ice sheet, Nye (1963, p. 
786) implicitly assumed that the height of the ice sheet H is 
constant. Dansgaard and Johnsen (1969, p. 216) also made this 
assumption. At first glance, this does not seem to make sense. 
Regardless of whether one believes the ice sheet is thousands 
or millions of years old, its starting thickness had to be zero!

However, both creationists and uniformitarians agree that 
thick ice sheets can form relatively quickly, on the order of 
thousands or tens of thousands of years (Paterson, 1980, p. 40; 
Wilson, Drury, and Chapman, 2005). Not too surprisingly, the 
actual number is strongly dependent upon precipitation rates: 
the higher the precipitation rates, the less time is needed for 
the formation of the ice sheet. If one believes the ice sheet to 
be millions of years old, then one can legitimately simplify the 
calculations by treating the height of the ice sheet as constant. 
Any error introduced by ignoring the thousands of years for the 
ice sheet to grow to its steady-state height will be negligible in 
light of the ice sheet’s multi-million-year history. Of course, if 
the ice sheet is just thousands of years old, then the time for 
the ice sheet’s formation cannot be neglected.

Secular age-depth models predict much more thinning 
of the ice with depth than do young-Earth models, and some 
reflection upon Figure 1 shows why. In the absence of melting, 
all the annual layers are preserved in the ice, even if they cannot 
all be distinguished visually. In that case, the average thickness 
of an annual layer is simply the height of the ice sheet divided 
by the number of years it has been in existence. Naturally, 
subdividing the ice sheet height into millions of horizontal 
slices yields a much thinner average annual thickness than if 
you divided it into just 4,500 horizontal slices.

Although obtaining the average layer thickness is trivial, 
obtaining the true annual thicknesses as a function of depth is 
considerably more difficult, because these thicknesses depend 
upon the vertical strain rate (discussed below), which gener-
ally varies with time and depth (Cuffey and Paterson, 2010, 
pp. 614–617).  

Hence, there is a need to be able to calculate the true 
thickness of an annual layer of ice in a creation model, in 
order to make comparisons between secular and creationist 
expectations. Oard (2005, p. 45) has already published some 
very rough estimates for the GRIP core in central Greenland 
(Figure 3), but there is a need to obtain more rigorous estimates 
for these thicknesses. 

Creationists have already noted (Oard, 2005; Hebert, 
2018b) that both the thicknesses and frequencies of tephra 

(volcanic ash and debris) layers in the deep ice cores make 
more sense in a creationist framework than in a uniformitar-
ian one. Finding better estimates for annual layer thicknesses 
may help demonstrate other ways in which the creation model 
makes better sense of the data than do uniformitarian models.

Governing Equation
In the absence of melting, the governing equation, at the divide 
location, for the growth rate of the ice sheet is:
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In Equation (1), H is the height of the ice sheet at the loca-
tion of the ice divide, t is the time since the ice sheet began 
forming, and dH/dt is the time rate of change of the ice sheet 
divide height. 
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Figure 3. Rough estimates by Oard of annual layer thickness-
es (in water equivalent) within Greenland’s GRIP ice core, 
based upon uniformitarian and creationist expectations.
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As we shall see later, the vertical strain rate is also (and is 
actually defined to be) the fractional change in thickness of an 
ice layer per unit time. In general, the strain rate at the divide is 
a function of both height z above bedrock and time t. Pioneer-
ing glaciologist J.F. Nye developed a simple thinning model 
(Nye, 1963) in which he assumed that the downward vertical 
speed increases linearly from zero at bedrock to a maximum 
value ws(t) at the surface. Or equivalently, the vertical velocity 
w has a maximum value of zero at the base, and this velocity 
decreases linearly with increasing z to a minimum value  –ws(t) 
at z = H(t). In this case, the strain rate is a function of time 
but not of depth.

	 (3)

Vardiman’s model is simpler still in that it treats the vertical 
strain rate –δ as a constant in both time and space. Not too 
surprisingly, vertical stress is greater at greater depths due to the 
greater weight of the overlying ice. However, the magnitude 
of the vertical strain rate is zero at a frozen base. For a frozen 
base, with horizontal velocity always zero at z = 0, the vertical 
strain rate must also be zero at z = 0, since the divergence of 
the ice velocity is zero (next section). Vertical strain rate is often 
approximated (Johnsen and Dansgaard, 1969) as a piecewise 
function whose magnitude increases from zero linearly up to 
some intermediate depth, and then remains constant all the 
way up to the surface. The strain rate also depends on time t. 
Future creation ice sheet models need to take into account 
space and time variations in the vertical strain rate.

Mass Balance
As implied by Equation (1), two competing processes influence 
the change dH in ice sheet height within a given time interval 
dt. The accumulation rate 
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thinning of underlying layers causes H to decrease. 

Because we are treating the ice as incompressible, the di-
vergence of ice velocity must everywhere be equal to zero. The 
ice core has a constant radius R and a cross-sectional area of 

πR2 (Figure 4). Hence, any downward mass flux of ice (per unit 
time) at the top of the ice core must be balanced by the radi-
ally outward mass flux of ice (per unit time) occurring at r = R. 
For cylindrical coordinates, in the case of azimuthal symmetry, 
the divergence of the velocity (Griffiths, 1989, inside cover) is
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Since the gradient of w is –δ, we can solve Equation (4) to 
obtain the radially outward velocity of the ice:
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Note that, although ( )sw t and H(t) both depend on time, their ratio,  , does not. The downward rate of mass 
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As we shall see later, the vertical strain rate is also (and is actually defined to be) the fractional change in 

thickness of an ice layer per unit time. In general, the strain rate at the divide is a function of both height z 

 and H(t) both depend on time, 
their ratio, δ, does not. The downward rate of mass flow (per 
unit time) into the cylinder’s top face (Figure 4) is 

Figure 4. Diagram of an ice core of height H and radius R, 
at time t, just before the next layer of annual accumulation 
is deposited. The ice at z = H(t) is moving downward with 
a speed of δH(t). The next layer of ice accumulation will be 
deposited shortly after time t + Δt, after the already-deposited 
layers have been thinned.
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be converted into a mass balance equation by multiplying 
both sides of the equation by ρA: the net change in mass of 
the ice core per unit time is the difference between the mass 
accumulation rate at the surface and the total mass outflow 
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Vardiman’s Model
Here we use Larry Vardiman’s analytical ice sheet model (1993) 
and a simple computer code to estimate layer thicknesses in 
Vardiman’s model. Vardiman wrote my Equation (1) as
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Here (t) is the thickness of ice accumulation that occurs in a time increment   = 1 year. Since   is always 

equal to 1, it may seem redundant to include it here, but we do so for purposes of dimensional consistency, as 

well as consistency with Vardiman’s notation. As noted earlier, the vertical strain rate at the divide,  , is 

constant in both time and space. By comparison with Equation (1), we see that Vardiman has implicitly 

assumed that the downward surface speed at the divide is always proportional to the height of the ice sheet.  

Equation (8) may be rewritten as 

 
( )dH tH

dt



   (9) 

Vardiman reasonably assumed that post-Flood ice accumulation rate would start very high and then smoothly 

decay over time to today’s “slow and gradual” average accumulation rates. Therefore, he modelled the 

accumulation rate as a decaying exponential (Figure 5): 

  (10) 

Here H/ is today’s accumulation rate, in meters of ice equivalent per year.  is a dimensionless number 

greater than 1 used to “scale up” the amount of Ice Age precipitation compared to today’s average annual value.  

Likewise, t is the time since the ice sheet began forming, and  is the e-folding time, the time for the initial 

post-Flood accumulation rate to drop to 37% of its original post-Flood value.  

After including the expression for the accumulation rate, Equation (9) may be solved with the mathematical 

“trick” (Zill, 1989, p. 66) of multiplying both sides of the equation by an “integration factor,” in this case, 
te . 

This makes the left-hand side of Equation Error! Reference source not found.(9) the exact derivative of 

tHe . Integration (see Vardiman, 2001 for details) yields this expression for H(t): 
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Here λH/τ is today’s accumulation rate, in meters of ice 
equivalent per year. Φ is a dimensionless number greater 
than 1 used to “scale up” the amount of Ice Age precipitation 
compared to today’s average annual value. Likewise, t is the 
time since the ice sheet began forming, and Ψ is the e-folding 
time, the time for the initial post-Flood accumulation rate to 
drop to 37% of its original post-Flood value. 
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  1   (e t
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Vardiman then imposed the boundary condition that the height of the ice sheet equal its steady state height H

when t  . In particular, he used the Camp Century ice core from Greenland, whose current height is 1,370 

meters and which would presumably have a frozen base (no melting) due to the low temperature near bedrock 

(Dansgaard and Johnsen, 1969, p. 216). This results in  

 1370 mHH 
    (12) 

Using today’s average accumulation rate of 0.35 meters/year, this allows us to solve for the parameter  : 

 
-4 -12.55×10 year

(1370 m)
H


   (13) 

Figure 6 is a graph of H(t) versus time since the Flood, using values of 	= 10,  = 350 years, and a total time 

since the Flood of 4,500 years. The height of the ice sheet at t = 4,500 years is 1,362 meters, not quite the full 

1,370-meter height obtained at t = ∞.  

In passing, I should note that there appears to be an error in Vardiman’s (2001) expression (his Equation 

4.20, p. 49) for the vertical velocity. This is not intended as a criticism, but merely as a “guidepost” for future 

researchers in this area. Using my notation, his expression is 

 ( ) ( )zw z H t
H




   (14) 

Based on Equations (3) and (13) Error! Reference source not found., and the boundary condition that 

( 0, ) 0w z t  , it seems this expression should actually be  
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Figure 5. Vardiman’s model for post-Flood ice accumula-
tion at Greenland’s Camp Century core, using parameter 
values of Φ = 10.0, Ψ = 350 years, H∞ = 1370 meters, λH = 
0.35 meters, and δ = 2.55×10-4 meters-1.
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Using today’s average accumulation rate of 0.35 meters/
year, this allows us to solve for the parameter δ :

10 
 

 H (t) 
H


1 e t   H

  1   (e t
  e t )  (11) 

Vardiman then imposed the boundary condition that the height of the ice sheet equal its steady state height H

when t  . In particular, he used the Camp Century ice core from Greenland, whose current height is 1,370 

meters and which would presumably have a frozen base (no melting) due to the low temperature near bedrock 

(Dansgaard and Johnsen, 1969, p. 216). This results in  

 1370 mHH 
    (12) 

Using today’s average accumulation rate of 0.35 meters/year, this allows us to solve for the parameter  : 

 
-4 -12.55×10 year

(1370 m)
H


   (13) 

Figure 6 is a graph of H(t) versus time since the Flood, using values of 	= 10,  = 350 years, and a total time 

since the Flood of 4,500 years. The height of the ice sheet at t = 4,500 years is 1,362 meters, not quite the full 

1,370-meter height obtained at t = ∞.  

In passing, I should note that there appears to be an error in Vardiman’s (2001) expression (his Equation 

4.20, p. 49) for the vertical velocity. This is not intended as a criticism, but merely as a “guidepost” for future 

researchers in this area. Using my notation, his expression is 

 ( ) ( )zw z H t
H




   (14) 

Based on Equations (3) and (13) Error! Reference source not found., and the boundary condition that 

( 0, ) 0w z t  , it seems this expression should actually be  

	 (13)

Figure 6 is a graph of H(t) versus time since the Flood, us-
ing values of Φ = 10, Ψ = 350 years, and a total time since the 
Flood of 4,500 years. The height of the ice sheet at t = 4,500 
years is 1,362 meters, not quite the full 1,370-meter height 
obtained at t = ∞. 
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Vardiman’s (2001) expression (his Equation 4.20, p. 49) for the 
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as a “guidepost” for future researchers in this area. Using my 
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Based on Equations (3) and (13), and the boundary 
condition that w(z = 0,t) = 0, it seems this expression should 
actually be 
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 ( ) , ( )Hw z z z z H t
H

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Note (Figure 4) that at ( )z H t , the downward velocity is ( )H t , as indicated by Equation (15)

Error! Reference source not found.. Note also that the downward velocity is H  when z H , as this 

is the downward velocity needed for the ice sheet to remain in steady state. 

Numerically Obtaining Annual Layer Thicknesses 

A simple computer code may be used to obtain the thickness of each annual layer at any given time, assuming 

that H(t) and ( )b t  both are already known. I used the Interactive Data Language (IDL) to write my code. In this 

example, we use Vardiman’s values for these quantities, calculated using the same parameter values used to 

produce Figures 5 and 6. The code uses double precision values for both constants and arrays to ensure 

numerical accuracy. However, in order to demonstrate the method in Figures 7 - 10, I do not practice rigorous 

adherence to significant figure rules. The reason for this is that rigid adherence to these rules, combined with 

rounding errors, will obscure the relationships between the numbers in Figures 7, 9, and 10, making it more 

difficult for the reader to follow the methodology I used. 

The code establishes two arrays, each with 4,501 elements, each element corresponding to a particular time t 

since the Flood (and inclusive of t = 0). These arrays (Figure 7) give the values of ( )b t and H(t) at 4,501 

particular times since the Flood, with an increment t =  = 1 year between each of these times. We are using a 

discrete numerical process to simulate a continuous process, so to keep our thinking straight, it is important to 

explicitly note the precise meaning of these H(t) values. Each value of H(t) is the total ice-core-divide height at 

the very start of a time increment, just before any of that year’s ice accumulation has been deposited. 

Furthermore, we can imagine the entire year’s worth of accumulation occurring just a tiny fraction dt of a year 

later. After the ice layer has been deposited, the thinning process begins and occurs continuously throughout t 

until the start of the next time interval.  

	 (15)

Note (Figure 4) that at z = H(t) , the downward velocity 
is –δH(t), as indicated by Equation (15). Note also that the 
downward velocity is – λH / τ when z = H∞, as this is the down-
ward velocity needed for the ice sheet to remain in steady state.
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Governing Equation 

In the absence of melting, the governing equation, at the divide location, for the growth rate of the ice sheet is: 
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In Equation (1), H is the height of the ice sheet at the location of the ice divide, t is the time since the ice sheet 

began forming, and dH/dt is the time rate of change of the ice sheet divide height. ( )b t is the accumulation rate 

at the surface of the divide (in meters of ice equivalent per year). ( )sw t is the downward vertical speed of the ice 

sheet surface at the divide location, also in meters per year. In this discussion we will use z to represent vertical 

distance (in meters) above bedrock. 

When the surface accumulation rate ( )b t  is greater than the downward vertical speed ( )sw t of the ice sheet 

surface, the thickness of the ice sheet grows, so that the derivative in Equation (1) is positive. If the 

accumulation rate is equal to the downward surface speed, the derivative is equal to zero, and the ice sheet 

height remains constant in a “steady state” condition. Finally, if ( )b t is less than ( )sw t , the height of the ice 

sheet divide will decrease. 

Since the underlying bedrock prevents the bottom surface of the ice sheet from moving downward, one 

boundary condition is that the vertical velocity w is always equal to zero at height z = 0. The spatial derivative 

of vertical velocity is the vertical strain rate (Cuffey and Paterson, 2010, p. 615): 
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As we shall see later, the vertical strain rate is also (and is actually defined to be) the fractional change in 

thickness of an ice layer per unit time. In general, the strain rate at the divide is a function of both height z 
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distance (in meters) above bedrock. 
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accumulation rate is equal to the downward surface speed, the derivative is equal to zero, and the ice sheet 

height remains constant in a “steady state” condition. Finally, if ( )b t is less than ( )sw t , the height of the ice 

sheet divide will decrease. 

Since the underlying bedrock prevents the bottom surface of the ice sheet from moving downward, one 

boundary condition is that the vertical velocity w is always equal to zero at height z = 0. The spatial derivative 

of vertical velocity is the vertical strain rate (Cuffey and Paterson, 2010, p. 615): 
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As we shall see later, the vertical strain rate is also (and is actually defined to be) the fractional change in 

thickness of an ice layer per unit time. In general, the strain rate at the divide is a function of both height z 

 and H(t) at 4,501 particular times since the 
Flood, with an increment ∆t = t = 1 year between each of these 
times. We are using a discrete numerical process to simulate 
a continuous process, so to keep our thinking straight, it is 
important to explicitly note the precise meaning of these H(t) 
values. Each value of H(t) is the total ice-core-divide height at 
the very start of a time increment, just before any of that year’s 
ice accumulation has been deposited. Furthermore, we can 
imagine the entire year’s worth of accumulation occurring just 
a tiny fraction dt of a year later. After the ice layer has been 
deposited, the thinning process begins and occurs continuously 
throughout ∆t until the start of the next time interval. 

Figure 6. Height of the Camp Century (Greenland) ice sheet 
as a function of time since the Flood, using Vardiman’s 
ice sheet model, with the same parameter values used to 
produce Figure 5.
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We also establish an array λ, with 4,500 elements, each 
element corresponding to the current thickness of each one 
of the 4,500 annual layers deposited since the Flood. Since no 
layers have yet been deposited at time t = 0, all the elements in 
λ are initially set to 0. These values will be updated iteratively 
as the code runs.

The infinitesimal vertical strain Ɛzz of a layer of ice is defined 
as the fractional change in the thickness of that particular layer:
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Since the layer thins, d is negative, as is the strain. Taking the derivative of both sides gives the strain rate, the 
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Separation of variables and integrating from time t to time t+t yields 

 
( ) ( ) ( )

t t

zz
t

t t t e t dt  
 

    
 
 

 (18) 

In other words, the thickness of a given ice layer after thinning will be the thickness prior to thinning, 

multiplied by the exponential, which I am calling “the fraction of thickness retained”. Since ( )zz t is inherently 

negative (or zero), this fraction will always be less than or equal to 1, which implies that the thickness of the 

layer after thinning cannot be greater than it was before thinning. Note that Equation (18) is applicable to all 

4,500 annual layers of the ice sheet, even if a layer has not yet been deposited. In that case, the fraction is 

simply multiplied by 0 meters, leaving the original thickness of that (not yet deposited) layer as still 0.  
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sum of the thicknesses of the individual 
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Second, remember that conceptually we are imagining that the entire year’s worth of ice accumulation occurs 

just a tiny fraction of a year after the start of the time interval. Since the thinning process does not begin until 

the year’s accumulation has been deposited, we should, when calculating the fraction of retained thickness 

(Figure 8), replace ( )H t  with ( ) ( )H t b t   , since this is the true thickness just before the thinning process 

begins: 
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from Vardiman’s model and stored in the appropriate arrays 
(Figure 7).

During the first year, exactly 3.85 meters of ice is deposited 
(Figure 7). Conceptually, we can imagine that all 3.85 meters 
of this ice is deposited at an infinitesimal time dt after t = 0. 
This is the layer thickness λ before the thinning that occurs 

Figure 8. Due to thinning, the height of the ice sheet at 
time t + Δt will be less than the sum of the previous height 
and the thickness of ice that was deposited just after t. Note 
that Δt = τ = 1 year. 

between t = 0 and t = 1. The fraction of the layer thickness 
retained will be
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Note that the first values of ( )H t  and ( )b t  are designated by the index i = 0, not i = 1, because IDL 

requires its array indices to start at 0, rather than 1. From Equations (18) and 

Error! Reference source not found.(20), and Figure 9, we see that the thinned thickness of this first layer will 

be 

 

(1 year) 0.99857491

3.8500000 m 0.99857491
3.8445134 m.

after before  

 


 (22) 

In this particular case, the starting value of  is equal to ( )b t  . This will always be true for the uppermost 

layer, which has just been deposited, but it is not true for the layers below it. Note that the ending thickness of 

this first layer (Figure 9) is equal to the height H (Figure 7) at the start of the next time increment (t = 1 year), as 

it should be. 

This process is then repeated. A second layer (1)b  of thickness 3.8400143 meters (Figure 10) is deposited. 

Equations (18) and (20), together with the updated thickness (0) (1)H   of the bottom layer, gives us a 

“fraction of thickness retained” of  
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accumulation rate is equal to the downward surface speed, the derivative is equal to zero, and the ice sheet 

height remains constant in a “steady state” condition. Finally, if ( )b t is less than ( )sw t , the height of the ice 

sheet divide will decrease. 

Since the underlying bedrock prevents the bottom surface of the ice sheet from moving downward, one 

boundary condition is that the vertical velocity w is always equal to zero at height z = 0. The spatial derivative 

of vertical velocity is the vertical strain rate (Cuffey and Paterson, 2010, p. 615): 

 ( , )zz
w t z
z





  (2) 

As we shall see later, the vertical strain rate is also (and is actually defined to be) the fractional change in 

thickness of an ice layer per unit time. In general, the strain rate at the divide is a function of both height z 

τ . This will always be true for the uppermost layer, which 

Figure 9. Illustration of how Equation 20 and Figure 7 are 
used to calculate the thickness of the first annual layer after 
thinning.

Figure 10. Illustration of how Equation 20 and Figure 7 are 
used to calculate the thicknesses of the first two layers, after 
the second annual layer has been deposited and both of the 
two layers have been thinned.



Volume 57, Winter 2021	 183

has just been deposited, but it is not true 
for the layers below it. Note that the end-
ing thickness of this first layer (Figure 9) 
is equal to the height H (Figure 7) at the 
start of the next time increment (t = 1 year), 
as it should be.

This process is then repeated. A second 
layer 

6 
 

 

Governing Equation 

In the absence of melting, the governing equation, at the divide location, for the growth rate of the ice sheet is: 

 ( ) ( )s
dH b t w t
dt

    (1) 

In Equation (1), H is the height of the ice sheet at the location of the ice divide, t is the time since the ice sheet 

began forming, and dH/dt is the time rate of change of the ice sheet divide height. ( )b t is the accumulation rate 

at the surface of the divide (in meters of ice equivalent per year). ( )sw t is the downward vertical speed of the ice 

sheet surface at the divide location, also in meters per year. In this discussion we will use z to represent vertical 

distance (in meters) above bedrock. 

When the surface accumulation rate ( )b t  is greater than the downward vertical speed ( )sw t of the ice sheet 

surface, the thickness of the ice sheet grows, so that the derivative in Equation (1) is positive. If the 

accumulation rate is equal to the downward surface speed, the derivative is equal to zero, and the ice sheet 

height remains constant in a “steady state” condition. Finally, if ( )b t is less than ( )sw t , the height of the ice 

sheet divide will decrease. 

Since the underlying bedrock prevents the bottom surface of the ice sheet from moving downward, one 

boundary condition is that the vertical velocity w is always equal to zero at height z = 0. The spatial derivative 

of vertical velocity is the vertical strain rate (Cuffey and Paterson, 2010, p. 615): 

 ( , )zz
w t z
z





  (2) 

As we shall see later, the vertical strain rate is also (and is actually defined to be) the fractional change in 

thickness of an ice layer per unit time. In general, the strain rate at the divide is a function of both height z 

(1)τ of thickness 3.8400143 meters 
(Figure 10) is deposited. Equations (18) 
and (20), together with the updated thick-
ness λ(0) = H(1) of the bottom layer, gives 
us a “fraction of thickness retained” of 
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(1)Fraction of thickness retained = 
(0) (0)
3.8445134 m

0 m + 3.8500000 m
0.99857491

H
H b 







 (21) 

Note that the first values of ( )H t  and ( )b t  are designated by the index i = 0, not i = 1, because IDL 

requires its array indices to start at 0, rather than 1. From Equations (18) and 

Error! Reference source not found.(20), and Figure 9, we see that the thinned thickness of this first layer will 

be 

 

(1 year) 0.99857491

3.8500000 m 0.99857491
3.8445134 m.

after before  

 


 (22) 

In this particular case, the starting value of  is equal to ( )b t  . This will always be true for the uppermost 

layer, which has just been deposited, but it is not true for the layers below it. Note that the ending thickness of 

this first layer (Figure 9) is equal to the height H (Figure 7) at the start of the next time increment (t = 1 year), as 

it should be. 

This process is then repeated. A second layer (1)b  of thickness 3.8400143 meters (Figure 10) is deposited. 

Equations (18) and (20), together with the updated thickness (0) (1)H   of the bottom layer, gives us a 

“fraction of thickness retained” of  

 

 

 

(2)Fraction of thickness retained
(1) (1)

(2)
(0) (1)

H
H b

H
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

 








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 (23) 

	 (23)

Substituting the appropriate values 
into Equation (23) yields a fraction of 
0.99916025. Multiplying both current 
thicknesses of these two layers by this frac-
tion gives their new thicknesses (Figure 
10). Note that the sum of these two new 
thickness is 3.84124897 m + 3.83678964 
m = 7.6780746 m, which is the height of 
the ice sheet at t = 2 years (Figure 7), as it 
should be. The process is repeated until all 
4,500 layers have been filled. As a consis-
tency check, the height of the ice sheet at t 
= 4,500 years is 1,362.1697 meters, which 
is also the final sum of all 4,500 individual 
layer thicknesses.

Results
Figure 11 is the resulting graph of an-
nual layer thickness as a function of height 
above bedrock. Note that the annual layer 
thickness at the top of the ice sheet is ~0.35 
meters, as it should be, since the present-
day accumulation rate is ~0.35 meters per 
year, and the uppermost layer has under-
gone negligible thinning. The bottommost 
layers have been thinned quite a bit, but are 
still much thicker than one would expect 
from a uniformitarian model.

Figure 11. Resulting Camp Century annual layer thickness as a function 
of height above bedrock. The sum of the thicknesses of all 4,500 layers is 
1,362.1697 meters, the height of the ice sheet at t = 4,500 years (see Figure 7). 

Figure 12. Age of Camp Century annual layers as a function of height above 
bedrock. 



184	 Creation Research Society Quarterly

That the minimum layer thickness in Figure 11 occurs, not 
at the very bottom of the core, but at an intermediate depth, 
makes physical sense. The much higher precipitation rates 
shortly after the Flood will tend to make the deepest annual 
layers much thicker than those at the top of the core. On the 
other hand, the deepest layers have also been thinning for the 
longest amount of time. These two competing processes will 
cause the minimum thickness to occur, not at the very bottom 
of the ice sheet, but at an intermediate depth, in this case about 
600 meters above bedrock.

Since we know the exact time at which each layer was 
deposited, it is also possible to obtain the age of the ice as a 
function of height above bedrock (Figure 12).

An Alternate Method
We may simplify Equation (18) to obtain another expression for 
the final annual layer thickness for a layer having an age equal 
to (4,500 – t) years. Since – δ is constant, it may be “pulled 
out” of the integral:
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In words, the final thickness is the original thickness of the layer at the time it was deposited, multiplied by an 

exponential thinning factor that depends on the layer’s age. Use of Equation (24) yields final layer thicknesses 

that are in very good agreement with Figure 11.Error! Reference source not found.

Discussion

These results should not be taken too seriously, as they were derived from the assumption that downward 

surface speed at the divide is proportional to the height, which is unrealistic (Vardiman himself acknowledged 

that his work was a preliminary effort). Nevertheless, it illustrates some important ice core basics. Hopefully 

this will become the springboard for more sophisticated creation ice sheet models in the future. The Mahaffy 

(1976) model may be a good place to start, as it allows for a time-varying accumulation rate and does not

assume steady-state, as do most uniformitarian ice sheet models. 

	 (24)

In words, the final thickness is the original thickness of the 
layer at the time it was deposited, multiplied by an exponential 
thinning factor that depends on the layer’s age. Use of Equa-
tion (24) yields final layer thicknesses that are in very good 
agreement with Figure 11. 

Discussion
These results should not be taken too seriously, as they were 
derived from the assumption that downward surface speed at 
the divide is proportional to the height, which is unrealistic 
(Vardiman himself acknowledged that his work was a pre-
liminary effort). Nevertheless, it illustrates some important 
ice core basics. Hopefully this will become the springboard 
for more sophisticated creation ice sheet models in the future. 
The Mahaffy (1976) model may be a good place to start, as it 
allows for a time-varying accumulation rate and does not as-
sume steady-state, as do most uniformitarian ice sheet models. 
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