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COMPUTER SIMULATION OF LARGE-SCALE WAVE MOTIONS 
ASSOCIATED WITH THE GENESIS FLOOD† 

M. E. CLARK* AND H. D. Voss* 

The theory and numerical methodology is developed whereby the dynamic processes associated with large-scale 
wave motions in the context of a global flood can be delineated. After a brief review of wave mechanics,‡ the avail- 
able analytical results are given in synopsis. The basic computer algorithm, SOLA-SURF, is then described and uti- 
lized to produce solutions to a series of problems considered to be germane to Genesis Flood explanations. The results 
of these simulations are presented in terms of the velocity fields and the temporal sequencing of the free-surface con- 
figurations. Interpretations of the results leads to inferences as to the development of sedimentary strata left by the 
passing of the wave motions. 

1. Introduction and General Problem Description 

A quantitative flood model is crucial to understand- 
ing the earth’s geologic features from a nonuniformi- 
tarian point of view. Such a model should feature 
dynamic global flow processes and be capable of incor- 
porating the sedimentary processes of erosion, transport 
and deposition. In the past, bold assertions that large- 
scale fluid motions were capable of producing large- 
scale geologic features might have been the only avail- 
able response to the uniformitarian’s equally bold asser- 
tions. Now, however, tools have become available by 
which the complex dynamic processes and mechanisms 
that were involved during the Genesis Flood can be sim- 
ulated. It is, therefore, incumbent upon flood cata- 
strophists to attempt to couple flood hydraulics and 
flood geology and to put them on a quantitative base. If 
a global flood capable of producing the majority of the 
earth’s sedimentary rocks is fact, then rigorous investi- 
gations using the disciplines of hydrodynamics and sedi- 
mentology should lead to accurate predictions of extant 
geological structures and terrain. 

In order to pursue these ends, a global flood model of 
the significant and fundamental processes must be 
made.’ Certainly, large global mechanisms are required 
if one is to suggest that nearly all of the 4 x 1 O8 km3 of 
sedimentary rock could have been laid down in the in- 
credibly short span of one year. Such a strict cata- 
strophic view is consistent with a literal interpretation 
of Scripture and is capable of explaining many of the 
apparent inconsistencies associated with uniformitar- 
ianism. Local lithologies could also be better inter- 
preted in terms of such a model by incorporating not 
only the particularities of the local depositional envir- 
onment but also the generalities of global occurrences. 

Considerable success has been achieved during the 
past decade in solving practical free-surface transient- 
flow problems using computer codes based on finite dif- 
ference (primitive variable) methods.* This paper 
reports on the first use of this type of code for global 
flood model calculations. The preliminary results of 
this paper are most important in establishing proce- 
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dures for depicting likely flow patterns encountered 
during the motion of large fluid masses. These numer- 
ical procedures are not limited to simple bottom boun- 
daries as are the analytical methods. They allow con- 
siderable freedom in the choice of sloping and curved 
bottom boundaries. Changes in bottom surface config- 
uration as a function of time, equivalent to tectonic ac- 
tivity, as well as injection of fluid from such sites of 
change, equivalent to the opening of the fountains of the 
deep, can be handled by modification of the boundary 
conditions. Future modifications to this basic program 
will allow detailed calculations to be made of erosion, 
transport, and deposition of a multiconstituent sedi- 
ment as a function of time over a simulated continent. 

It is the main purpose of this paper, then, quantita- 
tively to examine the theory, procedure, and computer 
code necessary to describe the complex hydrodynamic 
processes of a global flood. A general background on 
wave mechanics is followed by a short discussion of the 
significant but limited analytical solutions for wave 
propagation characteristics that are available. This 
work naturally leads into the major portion of the paper 
which develops the more intricate theory and numeri- 
cal methodology of flood actions. The basic computer 
algorithm is first tested by showing that it reproduces 
problem solutions already in the literature. The 
algorithm is then modified to simulate some practical 
flood problems in preliminary fashion. A single wave 
propagating up a continental incline is first simulated; 
the case where the same wave propagates over the se- 
quence of a submerged continental incline, mountain 
region, and mid-continent basin is then analyzed. The 
final simulations involve two subaqueous activities: the 
first depicts the flow patterns developed by the rapid in- 
jection of water into an ocean basin from an opening in 
the bottom boundary; the second shows the patterns 
resulting from a sudden uplift of a portion of an ocean 
basin. Discussion of these results and relevant conclu- 
sions are made in the final selection, 

2. Background and Basic Wave Mechanic Relations 

Many conditions associated with a global flood can 
be simulated if certain rational assumptions are made 
about its nature (e.g., the amount of water present, the 
bottom surface relief, wave mechanisms generating 

$The term “wave mechanics” is used in this Report to mean the 
mechanics of waves on water. It has nothing to do with Schrodinger, 
or with quantum theory. 
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dynamic motion of the water) and if a method is em- 
ployed which insures the proper application of the gov- 
erning laws in the processes that take place in every ele- 
ment of the model. Since analytical solutions for such 
complex flow fields cannot be generated, the analyst 
must develop solutions using numerical methods in con- 
junction with large digital computers. Only recently 
have computers become large and fast enough to pro- 
duce realistic results. These computer solutions could, 
for example, predict the details of the fluid motion in 
every region of a simulated ocean basin by producing 
the velocity vector fields, the pressure and shear fields, 
as well as the history of the changes in the free-surface 
configuration. This information could then be coupled 
with the known laws of sedimentology to postulate in- 
formation regarding the make-up of sedimentary rock 
in a given region and the manner in which it was laid 
down to form the earth’s crust. The general features of 
large inland basins (like cyclothems, other layered se- 
quences, or persistent facies) could thus be explained on 
the basis of the cyclic action associated with global 
waves. 

In this paper, wave motions on both large (global) 
and small (local) scales are deemed to be the significant 
mechanisms responsible for the development of the sedi- 
mentary geologic column. Although wave motions are 
omnipresent in the natural world, their basic features 
are enigmatic to the casual observer. They are, in 
essence, disturbances which move through a given 
medium, but do not move it at anywhere near the same 
rate as they move. A cork, for example, bobbing on the 
surface as waves pass by, is seen to remain in essentially 
the same horizontal position. 

All the different kinds of waves (water waves, stress 
waves, radio waves, light waves) obey the same funda- 
mental laws and have similar characteristics. The most 
significant of these for a water wave are: amplitude A 
(height of rise of the wave above the undisturbed free 
surface), wave length L (distance between successive 

wave crests in a wave train), frequency of occurrencef 
or period T, and the speed of travel c. The wave speed is 
related as follows to the wave length, frequency, and/or 
period: 

c=L/T or c=Lf (1) 

Waves are greatly affected by changes in the charac- 
teristics of the medium. As long as a channel maintains 
constant cross-section and depth, a given surface wave 
will travel with constant speed. Should the depth or 
cross-section change, the wave characteristics change 
accordingly. Changes in channel cross-section or the in- 
teraction of waves with boundaries result in the genera- 
tion of reflections. The incident and reflected waves in- 
terfere to form a resultant wave with modified charac- 
teristics. 

Oscillatory and translatory waves are the main two 
types of water waves. In the former, the net mass trans- 
port is nil; in the latter, there is a definite amount of 
fluid advancement in the wave direction. Water waves 
are also categorized by the relative values of wave 
length L and depth d. In Fig. 1 three ranges of the d/L 
ratio for oscillatory waves define as many different 
situations regarding the manner in which the water 
reacts to the passing of the disturbance. When the depth 
of the water is greater than half the wave length, the 
deep-water condition is present and surface motion (in 
the form of circular particle orbits) decays exponential- 
ly with depth resulting in little or no bottom motion or 
influence. When the depth is small compared to wave 
length (d/L less than O.OS), shallow water waves disturb 
all of the fluid (orbits are horizontal back-and-forth 
displacements of particles). At intermediate d/L ratios, 
surface effects are again felt throughout the flow depth 
(ellipses degenerating to a straight line at the bottom). 
In Fig. 1, the length is scaled with respect to depth for 
the assumed d/L values. The particle orbits are also 
scaled with respect to the wave amplitude; however, 
since the relations used to calculate the proper propor- 
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tions are based on small-amplitude theory, it is neces- 
sary for clarity to exaggerate the amplitude. 

Translatory waves are usually characterized by a sol- 
itary wave of long length and finite amplitude, and are 
treated as shallow-water waves. As such, they would 
manifest the same type of fluid motion beneath the sur- 
face as periodic waves. Translatory waves can be gen- 
erated by subaquatic tectonic activity or by true tidal 
forces. 

3. Analytical Solutions for 
Wave Propagation Characteristics 

Before describing the numerical studies based on the 
general Navier-Stokes governing equations, considera- 
tion is here given to some of the results of analytical 
solutions based on the simpler inviscid Bernoulli gov- 
erning equations. For horizontal and ramp bottom 
boundaries, these descriptions of flow can be associated 
with large global motions and lead to valuable insights 
into flood dynamics which, in turn, aid in understand- 
ing geomorphology. In particular, the description of the 
velocity field in the vicinity of the bottom boundary is 
most useful when trying to understand the flow environ- 
ment associated with the production of sedimentary for- 
mations. The analytical methods break down, however, 
for more complex geometrical boundary configurations 
and for large-amplitude waves-areas 
numerical methods can still be used. 

where the 

Stokes, in 1880, developed the theory for progressive 
periodic waves of small but finite amplitude in a 
medium of constant depth using expressions for the 
velocity potential up to the third order (the first order 
being so-called linear theory). For the first or second 
order, the speed of wave propagation c is given by 

(2) 

where g is the gravitational constant, L the wave length, 
and d the depth of the water. For deep water waves (d/L 
> O.S), tanh (2&L) - 1 and c= [gL/2.1rl”“. For 
shallow water waves (d/L < 0.05), tanh (27&/L) - 
2ndlL and c= [gd]0.5. Using these relations and adop- 
ting some reasonable lengths for a global ocean wave, 
corresponding’ wave speeds can be calculated. A wave 
100 km long would move at a rate of 91 .Skm/hr in an 
ocean 7 km deep (d/L = 0.07) but only 178 kmlhr where 
the depth was 0.25 km (d/L= 0.0025). Neither rate is 
small; but an observer on a ship (or ark) would not be 
aware of these large speeds since he would merely bob 
vertically according to the wave amplitude. 

The wave amplitude given by Stokes is 

A=?sinh(?!!)= a sinh (27rd/L) 

C L [(gd/27r) tanh (2ndlL)]0.5 (3) 

where a is the generator strength. The variation in wave 
amplitude with depth is difficult to assess using Eq. 3. 
In 19 11, Rayleigh developed a method for use on 
uniform periodic waves as they entered shoaling waters. 
Constancy of wave energy assumed, the ratio of the 
wave amplitude H at any depth to the wave amplitude 
H’ in deep water (i.e., water in which increases in depth 
no longer affect the wave characteristics) is 

E= [& 2$” 
H’ (4) 

where 

n=l[l+ 4ndlL I 
2 sinh &d/L (5) 

The wave speed in water of any 
that in deep water c, is 

depth c in ratio to 

’ L= tanh 2Td -= 
co Lo L (6) 

Tabulation of these quantities in terms of the d/L ratio 
are found in Wiegel.3 Continuing the foregoing example 
and using Rayleigh’s method, the 100 km wave moving 
at 9 15 km/hr with amplitude H in 7 km of water would 
have a height of 0.88H in deep water. Its wave length 
and speed in deep water would be 241 km and 22 11 
km/hr, respectively. According to the Rayleigh method, 
when this wave shoaled to a water depth of 0.25 km, the 
wave would increase its amplitude to 2.2H while 
decreasing its length to 19.5 km and its speed to 278 
km/hr. These results are shown in Fig. 2. 

The velocity field associated with first order (linear) 
theory is given by the horizontal (u) and vertical (v) 
component velocities as follows: 

u=H k cash m (d + Z) sin (kt - mx) 
2 sinh md (7) 

H k sinh m (d+ Z) cos (kt - mx) v= - 
2 sinh md 63) 

where x: and x are the horizontal and vertical coor- 
dinate directions, respectively, m is 27rlL, and k is given 
bY 

k* = mg tanh md (9) 
Of particular interest is the motion parallel to the bot- 
tom surface: When x= - d, cash m (d + z) - cash (0) = 1 
and Eq. 7 reduces to 

u= Hk sin (kt-mx) 
2 sinh md (10) 

Thus, at the bottom surface beneath a periodic wave, 
there exists a temporal (periodic) pulsation of velocity. 
The presence of such a phenomenon could hold great 
significance in the context of a global flood in explain- 
ing the production of local sequences of sedimentary 
deposits. 

It is also of interest to note that, in the higher order 
theories, there is a net mass-transport associated with 
traveling waves. Stokes’ expression for this transport is 
of the form 

u=l ?r*H* 
cash + (y,+ d) 

2 TL sinh* 2?rd/L (11) 
where y0 is the vertical distance between the still water 
position and the rvector. 

When these fluid velocity fields are present in 
sediment-laden waters, the many different mechanisms 
that are present produce a wide variety of depositional 
patterns. The bedding and lamination characteristics 
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Figure 2. Large-scale periodic waves in waters of various depths. Note that the vertical scale is exaggerated. 

observable in the sedimentary rocks result from dune 
and ripple m igra .tion, rolling; sorting, scour, traction, 
avalanching, and pulsations. The analytical relations of 
this section give the general characteristics of large 
scale fluid motions in uniform depth waterways or for 
special shoaling conditions. When more realistic boun- 
dary configurations are to be studied, it is necessary to 
use numerical analyses to solve for the same types of 
characteristics. 

4. Relevant Theory and Numerical Methodology 

All fluid mechanic behavior can be described by the 
Navier-Stokes (NS) and continuity equations when ac- 
companied by the appropriate ;nitiBl and boundary 
conditions. These eauations take the form of Dartial dif- 
ferential equations *applicable to each and&every dif- 
ferential element in the flow field. Since the lateral mo- 
tion is not of consequence in the motions to be studied, 
the two-dimensional versions of these governing equa- 
tions are sufficient and appear as follows in incom- 
pressible flow form: 

25. !2 = 0 (Continuity) 
ax ay (12) 

aU+ au* + auv = -*+g,+v (2%. a*u ) 
at ax ay ax ax2 ap 

(13) 

(longitudinal (horizontal) NS equation) 

av+ auv + av2 =-*+g,+v ( a2v + a*v ) 
at ax ay ay ax* ay* 

(14) 

(normal (vertical) NS equation) 

where u, v are the velocity components in the X, y coor- 
dinate directions, respectively, t is time, and v is the 
kinematic viscosity. The motion is forced by the terms 
involving p, the ratio of pressure to fluid density, and g, 
the body acceleration, or by boundary conditions. 

Considerable success has been achieved in solving 
practical, free-surface, transient-flow problems by the 
Los Alamos Scientific Laboratory of the University of 
California using the finite-difference, primitive-variable 
scheme. Starting in the mid-sixties with the Marker and 
Cell (MAC) method and progressing through various 
modifications like SMAC and ZUNI in the early seven- 
ties, this laboratory issued the SOLA-SURF code in 
1975.* This code is straight-forward and relatively inex- 
pensive to run, yet is capable of generating solutions to 
a wide variety of free-surface problems with only minor 
constraints on the geometrical configuration of the field 
boundaries. Accordingly, it has been chosen as the vehi- 
cle by which the flood simulations will be produced. 

By definition, the partial space derivative au/&x 
(where the velocity component u is a function of both 
independent variables X, y as well as t) is given by 

aU= limit +!! 
ax Ax-O Ax (15) 

As indicated in Fig. 3, the slope of the curve of such a 
function at a given point can be closely approximated 
by taking Ax as a small quantity E without going to the 
limit of zero as required by the mathematical defini- 
tion. Therefore, Eq. (15) can be written 

aU, limit U*-Ul z UY,j-G-IJ 
ax (x~-x+E X*-X, Ax (16) 

where E is a small quantity, subscripts i, j are indices in 
a space grid, and superscript n is a time index (t= nAt). 
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3. Graphical definition of the partial derivative of u with respect 

Progressing in a similar manner throughout the in- 
dividual terms of Eq. ( 12- 14), the governing differential 
equations can be converted to difference equations. In 
difference form, the continuity or conservation of mass 
equation is 

1 Un+l 
dx(’ 

r.j - Uyyj) + & (vy - vy,J!l )= 0 

(17) 
The NS equations take the following form when solved 
for the advanced time velocity components 

uy.)’ = Uy,j +At[L Ax (PY,j - pY+l.j ) + & 

- FLUX - FLUY + VISX] (18) 
1 

V “+l= ~2, + At [ - (PZ, - pFj+l ) + & 
i.j AY 

- FLVX- FLVY + VISY] (19) 
where a typical convective flux is 

FLUX= -!- 
4Ax [ 

U,,j+Ui+~~j)2+(YJUi,j+Ui+l.j((ui.j-ui+~.j) 

and a typical viscous flux is 

vISX= V [’ (Ui+l,j- ZUi,j+ Ui-l,j)+ 1 
Ax* AY2 

’ t”i,j+l - 2ui,j+ ui,j-l )I 
(21) 

The term cr is a coefficient used to provide various 
amounts of upwind differencing. If (x= 0, centered 
space differencing is obtained. If appropriately small 
values of Ax, Ay, and At are selected for use in these 
equations, they have been shown to yield valid solutions 
to time-dependent, free-surface problems of practical 
importance. 

5. Computer Model 

The specification of small spatial and temporal in- 

crements of the independent variables requires 
multitudinous and repetitious application of the gover- 
ning equations. The digital computer is well suited for 
such applications provided a systematized code can effi- 
ciently range over both the spatial field and temporal 
period of interest. The general arrangement of spatial 
meshes is shown in Fig. 4 where rectangular cells of 
width Ax and height Ay can be individually selected by 
the I, J indexing system. The actual fluid region is sur- 
rounded by a single layer of fictitious cells to aid in the 
definition of the boundaryconditions. Observation of a 
typical cell (shaded in Fig. 4) shows the exact locations 
at which the dependent variables u, v and p are defined. 

The same governing equations apply to all flow pro- 
blems. A given problem is made distinct from the rest 
by the imposition of the boundary conditions and the 
forcing function on the specific geometric configuration 
that describes the field. SOLA-SURF has internal provi- 
sions for imposing four different boundary conditions: 
1) the free-slip rigid wall for simulating inviscid fluid 
flows, 2) the no-slip rigid wall for viscid flows, 3) the 
continuative boundary condition for passing fluid out 
of the field at a boundary so as to avoid reflective 
upstream interference, and 4) periodic boundary condi- 
tions used to impose a forcing function at a boundary 
that repeats itself with time. The first two conditions are 
shown in Fig. 4. The free-slip condition is generated on 
a horizontal boundary by imposing a u-component 
velocity in the fictitious cell equal in magnitude and 
sign to the u-component in the cell adjacent to the boun- 
dary. The average of these two values produces a slip 
velocity component of u at the wall. Since the 
v-component is defined at the wall, it can easily be set to 
zero to complete the free-slip condition. The no-slip con- 
dition requires that both u and v be zero at the boun- 
dary. The u-component is made zero by imposing in the 
fictitious cell a u-component equal in magnitude but op- 
posite in sign to that which occurs in the cell adjacent to 
the boundary. For vertical boundaries, the roles of the u 
and v components would be interchanged since the 
u-component is now defined at the boundary while the 
v-component is defined a half mesh away. When the 
boundaries are curved or slanted, a modification of 
these definitions is required.* 

The positions of the free surface, denoted by H, and 
the bottom surface, denoted by HB, are indexed by JT 
and JB, respectively, as well as updated during the 
period of interest by the kinematic equation 

aH,,-ELv 
at ax (22) 

At the free surface, the pressure must be zero or a cons- 
tant value p,. The pressure in the cell containing the free 
surface is chosen so that a linear interpolation between 
it and the pressure in the cell adjacent below produces a 
zero value (or p,) at the surface. In equation form, 

pi. JT = ( 1 - q) pi,JT-1 + q ps 

where v=Ay/[Hi-(JT- Z.S)Ay] 
(23) 

The updated velocity components calculated by Eq. 
(18) and (19) will not in general, satisfy the continuity 
condition of Eq. (17). If, for example, there is a net flow 
of mass into a cell, the cell pressure can be increased to 
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Figure 4. General mesh arrangement showing a typical cell and boundary condition definitions. 

decrease the inflow. Contrariwise, when the net flow is 
out of the cell, the pressure can be reduced to decrease 
the outflow, The amount of pressure change is given is 
SOLA by the relation 

p=-D/[At(‘+‘)] 
Ax2 Ay2 (24) 

where D is the divergence obtained when Ey. (17) is 
calculated (i.e., the amount by which the right hand 
side deviates from zero). The new cell pressure is then 

pi.j = pi.j + Ap (25) 
and the velocity components are adjusted to reflect this 
change, 

ApAt Uij=Ui.j+- 
Ax 

ApAt Ui-l,j= Ui-l.j- - 
Ax 

Vi,j= Vi-j+ ApAt 

AY 

vi.j-l 
ApAt = Vi,j-1- - 

AY (26) 

These pressure and ‘velocity adjustments must be per- 
formed iteratively since the adjustments in one cell af- 
fects adjacent cell values. The flow diagram for in- 
itiating the calculations and then advancing them tem- 
porally through a period of motion is given in SOLA. 
The temporal advance is governed by the explicit solu- 
tion of the Navier-Stokes equations for the velocity field 
once for each cell and for each time step At. The adjust- 
ment of both velocity and pressure fields is made 
iteratively using the continuity equation. Iteration is 

stopped when a preset allowable divergence is reached; 
this allowable value being of the order of 10m3. 

6. Initial Results 

In order to gain familiarity with and to test the 
SOLA-SURF code, a sample problem was run for which 
a set of correct output values has been establishedm2 (See 
their addendum.) This problem (an undular hydraulic 
bore) is generated by moving a body of inviscid fluid in 
a rectangular channel at a uniform velocity into the 
right-hand rigid boundary. When the fluid interacts 
with and reflects from the boundary, a wave or bore 
develops which travels to the left with a characteristic 
wave form and wave speed. In the test run, the channel 
was 12 units long (20 meshes at Ax= 0.6) and 1.6 units 
high (8 meshes at Ay= 0.2). Initially, the fluid height 
was set at H= 1 .O units or 5 meshes. The time step used 
was t= 0.2. The bore was maintained with fluid by set- 
ting a continuative inflow boundary at the left end of 
the channel. All other boundaries were given the free- 
slip condition. The results of the run were in accord 
with the established output values over a calculation 
period from t= 0 to t = 10. See the supplementary il- 
lustration. 

7. Results of Practical Flood Problems 

Solitary Wave on Ramp. Problems which can be con- 
sidered germane to Genesis Flood explanations must in- 
volve the action of waves or wave trains in regions 
whose irregular bottom surfaces resemble anteduluvial 
terrain. To initiate the simulations, a single solitary 
wave (one whose water particles move only in the drec- 
tion of wave advance) was placed at the beginning of a 
two-dimensional flow field (10 units high, 27 units long) 
whose bottom took on an upward slope of l/5 at a 
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Supplementary illustration. A tidal bore on the Petitcodiac River, near
Moncton. New Brunswick. Canada. The calculation of a sort of bore
was one of the jobs on which the methods described in this article were
tested. The bore shown here is just interesting, not destructive; but one
can believe that during the Flood much greater bores may have caused
very extensive geological effects.

This picture was supplied by the Department of Tourism of New
Brunswick, Fredricton, New Brunswick, Canada, and is used here by
permission.

Note the undisturbed water at the right. where the bore has not yet
reached, the solitary wave moving to the right, and the disturbed water
behind it.

distance of 18 units from the left rigid vertical wall. The
right boundary was also rigid and vertical. The solitary
wave description given by Laitone4,5 was used: The sur-
face wave profile in a horizontal channel of constant
depth is

(27)
where

and the wave speed

(29)

The dimensionless velocity field (water particle velocity
components normalized by the shallow water wave
speed) in a constant-depth channel is given by

(30)

The solitary wave selected had a length of 18 units with
its center at 9 units from the left end of the field and a
maximum height of 1.25 units in a basin whose un-
disturbed depth was 1.0 units. Since the solitary wave is
self-propagating, the flow solution was obtained by im-
posing the velocity field generated by Eq. (30) and (31)
as the initial conditions and the allowing the program
to run for a reasonable time. The results of the solution
are presented in Fig. 5 in a temporal sequence of surface
profiles where a HIDE plot6 indicates successive traces
of the configuration of the free surface as time proceeds.
Although the amplitude of the solitary wave increases
as it moves up the slope, no secondary waves appear to
be generated by the ramp. As the wave reflects from
both the right and left boundaries, the amplitude is seen
to nearly double. In reflecting, a secondary wave is
generated which trails after the main wave, as seen in
the rear view representation of Fig. 5, and interferes
with it upon reflection off the left end. Although this
solution appears to be reasonable, there is no cor-
roborating evidence from the literature to confirm its
validity.

Solitary Wave Moving Towards a Submerged “Conti-
nent”. In an effort to simulate a more realistic Flood
situation, the solitary wave was next imposed on a field
which simulated a continental incline followed, after a
maximum rise simulating a coastal mountain range, by
an inland basin, all of which were submerged. A
somewhat truncated solitary wave (15 units long,
center at 4.7 units, height 1.25 units) was placed at the
beginning of a 35.4 unit long basin. The first quarter
length of the basin bottom was flat, the next quarter had
a slope of 1/5, while the last half was described by one
wave length of a sine wave which peaked at one-quarter
of its length (i.e., at a distance of 21.4 units from the left
boundary). The transition from ramp to sine wave was
fairly smooth.

The configuration of the free surface is presented in
Fig. 6 as a function of time. The movement of the wave
up the ramp is without notable incident in the free sur-
face but, as it passes onto the sine wave and over its
zenith, a series of secondary waves are generated as seen
in the rear view picture. The original wave reflects
strongly from the right boundary and considerable in-
terference is observed thereafter as the reflected wave
moves back over the inland basin. The generation of the
secondary waves is in accord with occurences in similar
calculations. For example, Kim and Lee7 have shown
the transformation of a solitary wave into a series of
waves as motion was calculated up a ramp and into a
channel half the original height. The generation of these
extra waves could hold added meaning in the explana-
tion of sedimentary layering due to wave action.
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Figure 5. Temporal sequence of free-surface configurations as a solitary 
wave moves up a ramp. Upper part, front view; lower, rear view. This 
calculation was made for zero viscosity. 

Figure 6. Temporal sequence of free-surface configurations as a solitary 
wave moves toward a submerged “continent”. Upper part, front view; 
lower, rear view. This calculation was made for zero viscosity. 

Additional information regarding the water action 
connected with the passage of the solitary wave can be 

trial, the sinusoid amplitude was set at 0.2 which made 

obtained from examination of the velocity fields at 
the undisturbed free surface just intersect the zenith of 

various times during the course of the motion. In Fig. 7 
the sinusoid for an undisturbed depth of 1.0 units. For 

is shown a temporal sequence of velocity vector plots 
the most part, the results of these calculations paralleled 

for this “continent” configuration. The u and v compo- 
those shown in Fig. 7. However, the SOLA-SURF code 

nent velocities as calculated were averaged in such a 
could not resolve the difficulty encountered with the in- 
adequate amount of fluid at the zenith of the sinusoid. 

way as to redefine the velocity components at the center 
of each cell. They were then added vectorially and plot- 
ted to an appropriate scale. Since the calculations were 
made for a fluid with zero viscosity and for the free slip 
boundary conditions, the vector plots reflect these 
stipulations. Some of the features noted in Fig. 6 can be 
observed in this type of plot as well, the most striking 

Further study of this type of situation is needed and 
quite possibly a stronger code will be required to handle 
this special boundary condition. 

Subaquatic Activity-Water Injection Through the 
Bottom Boundary. The final two attempts at mimicking 
flood situations in this initial study were aimed at in- 

being the transformation of the solitary wave into a 
series of waves once the zenith of the bottom boundary’s 
sine wave is encountered. The classic velocity field of 
the solitary wave at the beginning of the sequence is 
seen to undergo dramatic changes on the ramp and 
sinusoid. Worthy of note is the observation that the 
secondary waves move at a greatly reduced wave speed. 

This set of calculations was made with an undisturb- 
ed free surface height of 1.0 units and a sinusoid 
amplitude of 0.4 This combination provided a 
reasonable amount of water on top of the zenith of the 
sinusoid as well as a flooded inland basin. On another 

vestigating the fluid dynamic events associated with the 
welling-up of fluids from beneath the free surface as 
could be produced by a subaquatic earth movement 
with or without subsequent issuance of water through 
the disturbed bottom boundary. The idea for this 
simulation arises from a consideration of Gen. 7: 11 
where it states that in the 600th year, the second month, 
and 17th day of Noah’s life “the fountains of the great 
deep” were broken up. In any valid analysis of the 
Genesis Flood, it must be realized that a considerable 
percentage of the water could have come from such a 
source. Questions arise as to the consequences of such 
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Figure 7. Temporal sequence of velocity vector field plots as a solitary wave moves toward a submerged “continent”. This calculation was made for 
zero viscosity. The sequence reads from the top down. 

events: how are such occurrences manifested on the sur- 
face? are wave motions developed? what velocity fields 
are produced in the vicinity? etc. A simplified represen- 
tation of a “fountain” can be developed by using a por- 
tion of the bottom boundary of the basin as a “source” 
region where fluid is allowed to enter the field. As can 
be seen in the right half of Fig. 8, a rectangular field 12 
units long, initially filled with quiescent fluid, was sub- 
jected to an upward (u component only) velocity at the 
boundary between 3 and 6 units. This upward flow was 
continued for a period of 6 seconds after which the 
“fountain” was turned off. This action activated the 
whole flow field as can be seen in Frames 2-4 in Fig. 8. 
The first manifestation on the surface was the welling- 
up of the fluid directly over the site of the bottom open- 
ing with fluid being given lateral motion on both sides 
of the source. The complexity of the fluid action was in- 
creased by the reflection of these waves off from both 
left and right rigid vertical walls. Once the incident 
waves were reflected, they in turn interacted and in- 
terfered with each other as the motion continued to 
develop. This sequence, calculated with no slip boun- 
daries and a water viscosity, differs only in details from 
a second sequence (not shown) in which free slip and 
zero viscosity were stipulated. 

Another variant of this type of calculation is shown in 
the left half of Fig. 8 where the length of time during 

which the “fountain” was issuing fluid was increased to 
coincide with the total time of program run. The action 
in the field and at the surface is similar to the short 
opening time but is somewhat more dominated by the 
presence of the “fountain”. The total volume of fluid in- 
creases considerably by the end of the sequence as well. 

The configuration of the free surface as a function of 
time for both the short and long openings for the viscid 
cases are presented in Fig. 9. The interaction of the inci- 
dent and reflected waves generated by the subaquatic 
source is dramatically illustrated. 

Subaquatic Activity-Upheaval of the Bottom Boun- 
dary. The welling-up of water in a localized region 
could also be accomplished by an upward movement of 
the bottom boundary itself. If this movement took place 
rapidly, the fluid would be carried upward congruently 
with the boundary. In the simulation shown in Fig. 10, 
a field length of 18 units was used in which that section 
of the bottom boundary between 4 and 10 units was 
given an upward velocity corresponding to the tem- 
poral versine displacement generated by the following 
equation: 

HB(I)=: l sin( 2?rT) (1-cos( 
u F)) 

(32) 
where HB(1) is the local displacement of the bottom at 
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Figure 8. Temporal sequence of velocity vector field plots for a basin with water injection through the bottom boundary. Left, long opening; right, 
short opening. Water viscosity was used in the calculation. The sequence reads from the top down. 

the Ith section of the channel, E, is the maximum up- 
ward displacement of the bottom boundary, ~7 is a 
parameter governing the period of the boundary mo- 
tion, and L is the length of the 6-unit versine section. A 
series of a-values were used to explore the phenomenon; 
the u= 10 value used in the display in Fig. 10 and 11 
moved the bottom boundary suddenly enough to carry 
the water upward without running off during the pro- 
cess. During the quarter period of motion generated, the 
bottom was raised to its maximum amplitude of 0.5 
units corresponding to the 10th time frame in Fig. 10. 

After reaching this position, the motion of the boundary 
was stopped. 

As can be seen from this sequence of velocity vector 
fields, the water then begins to flow down from this rise 
in the bottom boundary. In so doing, two rather iarge 
waves develop at the ends of the versine which in due 
time begin to propagate away from the rise. After 
several reflections from the rigid vertical walls at both 
left and right ends of the basin, the motion eventually 
dies down and the free surface adopts a nearly horizon- 
tal position in Frame 84. With additional computer 
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Figure 9. Temporal sequence of free-surface configurations for bottom 
boundary water injection. Above, long opening, front view; below, 
short opening, front view. Water viscosity was used in the calculation 
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Figure 11. Temporal sequence of free-surface configurations for bottom 
boundary upheaval. Water viscosity was used in the calculations. 

Figure 10. Temporal sequence of velocity vector field plots for a basin with upheaval of the bottom boundary. The sequence is shown by the numbers. 
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running time, the fluid motion still present in Frame 84 
would be stopped by the viscous action and the free sur- 
face would be horizontal over the quiescent basin of 
water. 

Of particular note is the considerable amount of fluid 
activity that occurs throughout the time sequence but 
particularly during the boundary motion. The large 
vortices, developed at the ends of the versine, decay 
slowly. The waves mentioned before have similar 
characteristics to the solitary waves imposed by equa- 
tions in Fig. 5 and 6. The initial development of the free 
surface during uplift as well as subsequent propagation, 
reflection, and interference effects are clearly 
delineated by the temporal sequence of free-surface con- 
figurations shown in Fig. 11. 

8. Discussion and Conclusions 

The hypothesis adopted in this study reveals the 
authors’ beliefs that the Genesis Flood was a dynamic 
year-long historical event that shaped the character of 
the earth’s crust into the form we now see. These beliefs 
originated at the level of a literal interpretation of 
Scripture and have been augmented and confirmed by 
various subsequent studies including the one presented 
herein. The large water mass that prevailed during that 
period of history was anything but tranquil due to the 
variety of spatially- and temporally-varying forces that 
were brought to bear upon it. During the early stages, 
these forcing functions, which included large tectonic 
movements, the releasing of the “fountains of the deep”, 
and large-scale hydro-thermal activity, were con- 
tinuous although erratic and caused wave motions 
which were subsequently amplified by wave reflections 
and interference. The persistence of these perturbations 
during that period of the flood when the earth was com- 
pletely covered with water led to enhanced cyclic ac- 
tivity since the wave motions were not readily damped 
because of the spherical geometry of the ocean system. 

Yet to be quantitatively considered in all this 
dynamic activity is the contribution due to the gravita- 
tional forces caused by the earth-moon and earth-sun at- 
traction. The frequency of the resulting semi-diurnal 
tide (12 hr.) is known to be close to the natural frequen- 
cy of a global ocean for some modes of oscillation.8 It is 
reasonable to assume that the normally-small present- 
day tidal effects could be greatly amplified due to 
resonance. The reasonableness of assuming that the 
tidal effects during the flood year were greatly 
augmented is increased when it is realized that the 
governing parameters associated with tidal resonance 
effects would be quite different from present-day values. 
Hendershott says “This proximity to semi-diurnal 
resonance should not be surprising in view of the rich 
spectrum of free oscillations possible in even a regular 
flat-bottom ocean of global extent. -Variable bottom 
relief introduces additional free oscillations”. 

Also adopted in this study is the concept that the 
sedimentary structures which exist in the geologic 
record show cyclic characteristics as well as persistence 
over vast continental regions. These observations are in 
keeping with the aforementioned global and continen- 
tal wave motions. Coupled with these observations are 
the uniform depositional characteristics of the sedimen- 

tary layers without erosional channels and cuts to in- 
dicate intermediate passage of time. If the slow motions 
of local flood waters involving many millenia were 
responsible for the deposition of the geologic column, as 
is specified in uniformitarian geology, no two sedimen- 
tary strata should be seen in complete conformity. 
Rather, the sequence should show the evidence of con- 
tinual interruptions in the layering process and a 
general lack of strata conformity. 

Furthermore, there is Scripture support for the 
dynamic nature of the flood. Gen. 7: 18-19 states that 
“the waters prevailed and were increased greatly upon 
the earth-and the waters prevailed exceedingly upon 
the earth.” Since the concepts of strength, vehemence, 
and insolence are involved in the words “prevailed ex- 
ceedingly (gahar me&)“, it can be inferred that 
dynamism rather than tranquillity was extant. After the 
40 initial flood days in which both the “windows of 
heaven” and “fountains of the deep” were active, there 
were 150 days in which “the waters returned from off 
the earth continually” (Gen. 8: 3). Nelsong, instead of 
rendering “halak” as “continually”, finds evidence for 
a more literal translation of “to and fro.” He discusses 
this interpretation and gives other Scriptural support 
for a flood characterized by large motions and strong 
forces. New Testament writers (Mt. 24:39, Lk. 17: 27, 2 
Pet. 2: 5, 3: 6), when referring to this historic event con- 
sistently use a unique word (kutuklusmos) for the flood. 
It is the word translated in the Greek (and English) as 
“cataclysm.” Again, it is easy to infer the dynamic 
character of the flood as opposed to a tranquil one. 

In depicting the flow fields associated with several 
practical Genesis Flood situations, it has been shown 
that it is possible using numerical analysis to simulate 
the motions of large bodies of water having irregular 
boundary geometries and complex initial and boundary 
conditions. Considerable free surface activity has been 
demonstrated but, equally as important, significant 
temporal and spatial velocity distributions have been 
shown to occur in close proximity to the bottom boun- 
dary. These distributions are essential if these flows are 
to be capable of developing bed forms similar to the 
many sedimentary layers and cycles of rock units found 
throughout the world. For the large number of sedimen- 
tary layers to be deposited during the flood year instead 
of during the countless millenia available according to 
uniformitarian notions, there would need to be daily oc- 
currences of mechanisms capable of producing large 
waves. Resonating tidal waves (i.e., tidal waves that 
have large amplitudes) could twice daily produce large 
moving masses of fluid capable of bringing bed loads 
into position for deposition once the wave passed. In- 
terference effects associated with these waves would 
multiply the number of deposits that could be laid down 
per day. Since subaquatic mechanisms of the types in- 
vestigated herein could have been frequently imposed 
during the early stages of the flood year, these too could 
have contributed greatly to the wave activity and the 
concomitant sedimentary environment. The difficulty 
and computer effort of the modeling would increase 
many fold if the particulate matter were included. 
Although attempts at such modeling are contemplated, 
the alternative of physically modeling the sedimentary 
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process is already in progress.’ The coupling between 
the computer modeling and the physical modeling 
should increase the likelihood of arriving at a plausible 
physical explanation of geological features in accord 
with Scriptural accounts of the Genesis Flood. 
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An analysis of the assumptions which must be made when ancient climate is inferred from the fossil record reveals 
that one must accept the Principle of Uniformitarianism and quite possibly the Theory of Evolution in order to deter- 
mine the climate. Under the assumption that the earth has undergone a worldwide flood of a year’s duration, it is im- 
possible to determine what the pre-flood climate was like. The implications of this are that all current flood models 
which attempt to satisfy the warm earth criteria may be satisfying a situation which never existed. 

For over fifty years one of the most firmly accepted 
creationist doctrines has been that the earth before the 
flood had a uniformly mild climate. Whitcomb and 
Morris have no less than eight quotations from three 
authorities attesting to the universal warmness of 
various ancient geologic periods.’ Smith presents 
evidence in-favor of the warm earth theory.’ Rehwinkle3 
as well as Whitcomb and Morris cites coal as evidence 
of the warmness of the prediluvial world. In fact Whit- 
comb and Morris state that, 

“A universal warm, moist climate alone explains 
the evidence.“4 

Dillow cites limestone deposits in the higher latitudes, 
palm trees in Alaska, crocodiles in New Jersey, and 
frozen ripe fruit found in the New Siberian Islands as 
evidence of this mild climate. In fact he makes a tem- 
perature estimate of the pre-flood world based upon the 
fossils found at various latitudes.5 

Other examples are easily brought to mind. Fossil 
tropical breadfruit found, along with magnolias, 
laurels, ferns, and sequoias, 300 miles north of the Arc- 
tic Circlees The Byrd expedition discovered fossil ferns 
at latitude 87 O S.’ Obviously, such facts strongly com- 
pel a researcher to accept the idea that the polar regions 
were considerably warmer in the past than they are 
presently. There just seems to be no way any such 
animals and plants could have lived in these regions 
under present climatic regimes. 

However, an analysis of the assumptions which one 
must make to determine the pre-flood climate shows 
that they are totally incompatible with the assumption 

‘Mr. Glenn R. Morton lives at 3313 Clavmore, Plano, Texas 75075. 

of a worldwide flood. The reason for this is that in order 
to infer climate from the fossil record one must implicit- 
ly accept the Principle of Uniformitarianism. 

Two assumptions must be made before climatic infor- 
mation can be deduced. First, it must be assumed that 
the habitats of the fossil species being studied are of the 
same kind as can be observed to be inhabited by the liv- 
ing representatives today. In other words, the habitat 
has not changed. This is the first form of this assump- 
tion. When the case occurs that there are no living rep- 
resentatives in a fossil assemblage, it must be assumed 
that the habitat is similar to that of the nearest living 
“relatives”. This is the second form of the first assump- 
tion. Few creationists would have problems accepting it 
in its first form; but they should feel uncomfortable 
with its second form. In accepting it in its second form 
as stated, one is implicitly accepting evolution; because 
only in the theory of evolution are there any relatives! 
One could escape this by assuming that God created 
similar forms to occupy similar environments, but he 
must be careful in making this assumption. With the 
wide climatic tolerances observed within various 
genera, this assumption is shaky at best. 

It is only by using this second form that any climatic 
inferences can be made, e.g. from dinosaurs. There are 
no living representatives; but the reptiles, being struc- 
turally similar to these ancient creatures (although this 
has been questioned) are used as the models. Thus it is 
concluded that the dinosaurs must have been cold- 
blooded and lived in more temperate climes. By this 
reasoning, then, the dinosaur footprints on Svalbard 
means that the area was once warm.* Accepting this 
conclusion is uncomfortably close to accepting evolu- 
tion also. 




