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Abstract
In this article, in order to correct a few misconceptions, a simple yet in-depth discussion of the procedures,

methods and results associated with Gödel type incompleteness theorems is given. In particular, the important
concepts of formal and informal reasoning processes are discussed and illustrated. Further, information is compiled
from the discipline of Mathematical Logic and elsewhere that gives exceedingly strong evidence that there are
human mental processes that cannot be duplicated by a man-made machine.

Introduction
Recently there have appeared within creation-science

literature some very imprecise and confused statements
relative to various incompleteness results as first de-
veloped by Kurt Gödel (1931). This is unfortunate
since these incompleteness results have very important
consequences for creation-science. In Hoffman (1993,
p. 14), we read, among other statements, a Gödel
incompleteness theorem interpretation. “In any system
diverse enough to be of interest, there will always
occur inconsistencies or contradictions.” This statement
has no meaning unless phrases such as “system diverse
enough,” “of interest,” and “inconsistencies or contra-
dictions” are specifically and nonambiguously defined,
for a reader of this statement might conclude, incor-
rectly, that a formal logical system is, in all respects,
the type of system used within the informal mathema-
tical sciences. Certainly, the logical system referred to
by Hoffman could not be the dialectic he uses to argue
for the acceptance of his conclusions.

In the letter by Groah (1994, p. 190), we have a more
formalized interpretation of Gödel’s theorem. “Every
consistent, recursively axiomatized extension of the
Peano system has at least one undecidable i.e., neither
provable nor refutable—sentence.” A reader not trained
in the technical jargon used within the discipline of
mathematical logic would find this statement also mean-
ingless even if each term was defined specifically. More
importantly, however, is the fact that a significant con-
cept relative to a specific logical system is missing from
the Groah’s quoted statement. Without this concept,
Groah’s statement is misleading for the specific Gödel
“sentence” referred to by this quotation is a (provable)
theorem within the informal theory of natural numbers.
This article is an attempt to more accurately describe
the significance of such incompleteness results for such
results are important in that they indicate that the infor-
mal mental processes, the intuition and ingenuity dis-
played by the mathematician, and, indeed, by all indi-
viduals, in producing acceptable informal statements
seem not to be formalizable by means of a fixed set of
rules and procedures. Assuming that computer pro-
grams must include for their proper operation a fixed
set of rules or procedures (i.e. algorithms) in order to
function properly, then if one accepts as correct the
methods used to obtain incompleteness and related
results, then the functions of the human brain that pro-
duce comprehensible informal statements cannot be
regarded as totally reproducible by such a machine.
This last conclusion will be discussed more fully.
*Robert A. Herrmann, Ph.D., Mathematics Department, U. S. Naval
Academy, 572 Holloway Rd., Annapolis, MD 21402-5002.

Informal Versus Formal
It seems that much of the confusion produced by the

above quoted statements is simply the result of mixing
“apples and oranges.” Within mathematics, certain terms
take on completely different meanings depending upon
the context. With respect to incompleteness and similar
concepts, there is always exhibited two distinctly dif-
ferent mathematical approaches, the informal and the
formal. Although different names are given to the vari-
ous languages and methods used within different
branches of mathematics, they all fall within two dis-
tinct categories. The languages used in an informal
mathematical approach can be termed “metalanguages.”
This is a natural native language such as English, French,
Russian, Spanish, etc. The term informal will always
refer to information conveyed by means of a native
language. A formal language is composed of a collec-
tion of finitely long strings of symbols. They are called
formulas, formal symbol strings or well formed formula.
For example, for some formulations of the formal
predicate language (x)(P(x,y) → Q(x,y)) is a formula.
The logical procedures used in the informal approach
are not specified. In some cases, these informal pro-
cedures are simply called by the general expression
“the metalogical procedures.” I mention that 99% of all
mathematical discourse is informal.

Gödel used as a formal language a slightly modified
Whitehead and Russell (1910-13) language of “types.”
You will not find this language described in any of your
elementary texts in Mathematical Logic. Significant to
the ideas within any informally described procedure is
the concept called “content.” The content of any form
of informal communication directed towards an indi-
vidual is the collection of all impressions the commu-
nication evokes within the individual’s mind, or brain
if you wish. The content of a communication depends
upon an individual’s education, training, life experiences
and the like. In order to analyze patterns of human
thought without these patterns being confused by con-
tent, formal symbol strings are used. However, how
does one construct and analyze these patterns? Often
using a portion of the informal theory of natural num-
bers, informal rules are given that detail how to com-
bine the symbols in a left to right pattern in order to
form the formula. These informal rules are written in
such a simplistic manner and the content is so specific
that they can be repeated over and over again by
millions of individuals and the end result of these repe-
titions will be similar collections of formulas. You can
think of a formula as a geometric configuration of lines
and curves. Because these informal rules, when re-
peated, yield geometrically similar collections of form-
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ulas, these rules form what is technically called an
algorithm. Indeed, the rules are so simplistic that I
have on my desk a computer program written in True
Basic that will also produce the same collection of
symbol strings.

Once you have constructed a formal language, then
a second set of informal algorithm-like rules gives spe-
cific directions as to the exact formulas you are allowed
to write down in a finite list and, usually, an informal
rule or rules that describe how to use a finite collection
of the listed formula to obtain a formula not already
present in the list. When a formula is written down,
you state which of the informal rules you used to
obtain the formula. An individual’s ability to obtain a
list of formulas depends, of course, upon the content
of the informally stated rules. Much like a demonstra-
tion in elementary geometry, a formal proof is obtained
by writing down, in a list, a numbered column of
formulas on the left of a piece of paper and a corre-
sponding numbered column on the right that states the
informal rule that was used to obtain the formula im-
mediately to the left. This allows the formal proof to
be checked by other individuals who can exactly repeat
the rules (i.e. individuals who have the requisite train-
ing). The final formula listed in the left hand column is
called a formal theorem. Finally, the entire list of form-
ula with the last one being the formal theorem is called
a formal proof. Often in the literature, the adjective
“formal” is missing from the expressions “language”
“theorem,” “theory” and “proof.” Although, it may seem
repetitious or tedious, these adjectives are retained in
all that follows.

The Hilbert Program
In order to analyze the processes associated with

obtaining a formal proof, David Hilbert chose a certain
subset of the informal theory of natural numbers. This
subset is of such a simplistic nature that it is assumed to
be, at least, empirically consistent. Hilbert allowed a
certain subset of the classical rules of informal logic to
be used during such an analysis, as well as a very weak
portion of the language of informal set-theory. Gödel
used all of the allowed informal methods to develop
his conclusions. However, as would be expected when
new concepts first appear in print, he obtained his
results in a slightly compact manner. All modern ap-
proaches to the concept of incompleteness are expanded
improvements over Gödel's original. Today, there are
many different approaches that lead to the same in-
completeness conclusions. I will discuss two approaches
and mention some of the others.

In Mendelson (1979), we find an approach that im-
proves upon and parallels the Gödel original. Mendelson
selects a certain formal axiom system (i.e. a specific set
of formula) called S and the informal rules for what is
termed a first-order logical system. But as they are
stated, these formal axioms have no content, they have
no meaning. By an informal mathematical process called
an interpretation these formal symbol strings can be
given a “meaning.” Under an interpretation, these formal
axioms are informally shown to be informal theorems
in the informal theory of natural numbers where the
informal theory’s semiaxiom system is called the Peano
Axioms. The informal rules for formal theorem con-

struction are then used to obtain formal proofs of
various formulas (i.e. formal theorems of S).

Next, the allowed informal portion of the theory of
natural numbers is used to give definitions and construct
informal theorems about recursive functions and rela-
tions. The definitions, the theorems and all else relative
to recursive functions are produced by application of
informal mathematical reasoning and are all informal
in character. Now comes the most important informal
process of all. An informal description is given that
produces a correspondence between the informal natu-
ral numbers and the formal symbol strings. Whether or
not this description is comprehensible by an individual
or, indeed, is accepted as a “correspondence” depends
upon the descriptions content. Using this correspon-
dence, it is claimed that certain informally expressed
recursive functions or relations will model the informal
rules and procedures for formal theorem construction.
Rules for this modeling process are not specifically
described, they are intuitive in nature. The acceptance
of these recursive objects as models depends upon an
individual’s experience with translating informally de-
scribed physical processes into an informal mathemati-
cal language or what is called mathematical modeling.
The same can be said about mathematical models for
any physical process. But, in this case, the physical
processes are certain (human) linguistic processes. This
modeling is done in such a way that each of these
recursive objects can be further translated into a formal
theorem. This last translation process also depends upon
an individual’s experience in recognizing when a formal
symbol string corresponds to an informal mathematical
statement. Thus, it is claimed, that we have formal
theorems that represent informal processes and objects.

The actual two part incompleteness result is an in-
formal theorem. If one accepts the informal methods
allowed by Hilbert (a very important acceptance at
this point), then part one of this theorem says, when
informally interpreted, that, assuming that S has a
property called simple consistency, there is a formula,
call it G, that is not a formal theorem of S. At this point,
this result is not surprising at all since simple consistency
implies that there are numerously many formula that
are not formal theorems of S.

The general concept of completeness means that a
formal or informal process produces at least a certain
collection of formal or informal theorems. To show
how different the specific completeness definitions
can be, consider the fact that Gödel previously pub-
lished his famous completeness result (Gödel, 1930).
One year later, he published his incompleteness result.
In this article, it is not necessary to discuss, in any
depth, the second part of Gödel’s Incompleteness
Theorem nor the Rosser (1936) improvement—a result
that can be interpreted as stating the formal incomplete-
ness of a formal axiom system. [Formal incompleteness
for a formal axiom system is described as the existence
of two formula, one the formal negation of the other,
and neither is a formal theorem.]

Does the formula G itself have meaning? The answer
is no, unless you supply an informal interpretation.
Using an informal argument and an interpretation, the
formula G can be given meaning within the informal
theory of natural numbers and, more importantly, it is
an informal theorem established by informal mathe-
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matical means (Mendelson, 1979, p. 159). This means
that the interpreted G does not establish the informal
incompleteness of number theory. Moreover, a formula
with the same character as G can actually be formally
proved if the formal logical system is strengthened to
one that is called a second-order logical system (Robbin
1969, p. 121). Thus, due to the missing concepts that
deal with different logical systems, the informal and
the formal, the above quoted statements are, indeed,
very imprecise.

Although interpreted G is an informal theorem about
natural numbers, does it give any information that can
be construed as interesting to a number theorist? The
answer is again no, for interpreted G states that there
exists a collection of ordered pairs of natural numbers
(i.e. a binary relation), call it Pf, and there does not
exist a particular natural number as a second coordinate.
This is not a very startling disclosure for informally
there exists numerously many such relations. But what
if we step back out of the informal theory of natural
numbers and into the language of the Hilbert mathe-
matical approach to analyze formal logic, then G can
be interpreted informally in terms of the formal pro-
cesses used to produce formal theorems. The number
that does not appear as any second coordinate in the
relation Pf is a numerical name for G itself. The num-
bers that appear as first coordinates in Pf are numbers
that give to each and every formal proof an identifying
name and, informally, the relation Pf exists. Rephrasing
this metamathematical interpretation, we have that if
one uses a portion of informal number theory, as well
as a specific correspondence between the natural num-
bers and symbol strings, specific algorithm-type in-
formal rules for formal theorem proving, a portion of
informal mathematical reasoning, and the informal
concept of consistency, then there is a specific formula
G that, when interpreted, is an informal theorem of
number theory and that shows the existence of a specific
mathematical relation Pf. Further, if this relation Pf is
interpreted informally with respect to the Hilbert ana-
lytical methods, then it states that we cannot use the
formal system S to formally prove G. If you reject any
of the hypotheses stated in the above two sentences,
then there is no Gödel incompleteness theorem. I note
that the formal system S can be replaced by other
similar formal systems that are listed in a similar manner.

Thus far, this shows that you either do not analyze,
with the above stated methods, formal logic, or that,
assuming a Hilbert type approach is allowed for all
such analysis, a formal axiom system such as S cannot
capture all of the “informal theorems” produced by
means of informal mathematical reasoning from a
broadly interpreted informal theory of natural numbers.
Here “broadly” implies the actual use of the theory of
numbers to count and analyze real physical entities
such as the actual marks on a piece of paper that we
call formula.

The major effect of Gödel’s result was to stop the
Hilbert program search for a formal axiom system that
could capture all of the informal theorems of informal
number theory. More importantly, using this result,
Gödel’s Second Theorem put a stop to the Hilbert pro-
gram search for a formal first-order proof based upon
a formal axiom system such as S that would have as its
last formula a statement that when interpreted would

say that the system is simply consistent. Gödel’s Second
Theorem (Mendelson, 1979, pp. 163-164) shows that
under the Hilbert procedures no formal first-order proof
of consistency exists. I again mention, however, that a
formula that can be interpreted to mean “consistency”
can be proved formally if we strengthen the formal
logical processes used. Further, in Herrmann (1987, p.
13), it is shown that there is an informally produced
ultralogic that behaves like first-order logic and that
can “prove” all of the informal theorems of number
theory. This is one of the ultralogics that can be used to
obtain all of the properties of the MA-model (Herrmann,
1991). Historically, the fact is that, even prior to Gödel’s
work, many mathematicians conjectured that their in-
formal methods could not be formalized.

Mathematical Logic
Who is it that determines the correctness of such

incompleteness results and can we remove some of the
vague informal procedures? As in all disciplines, the
correctness of a result is determined by expert wit-
nesses. In this case, these are experts in the discipline
called Mathematical Logic. All such experts agree that
these results follow the proper procedures of their
discipline. There are some individuals that claim, espe-
cially today, that there are errors of one sort or another
with the incompleteness results. Need I mention that
many come from the disciplines called Artificial Intelli-
gence and Computer Science. All that I will say is that
the expert witnesses from the area of Mathematical
Logic have taken on the challenges of these “objectors”
and have given very convincing arguments that under
the rules of modern Mathematical Logic the claimed
errors do not exist. Indeed, the formal incompleteness
results for many formal axiom systems can be argued
for in a more convincing manner than the arguments
given in Mendelson (1979).

Consider what is found in Robbin (1969). We have
the formal axiom system called RA. This is larger than
the S system and incorporates enough formal symbol-
ism so that the necessary informal theorems relative to
recursive function theory can be formally reproduced.
This does not remove all informal requirements. You
still have the informal rules for formal theorem con-
struction, an informal correspondence that associates
some of the recursive functions with language symbols
and the use of the informal mathematical reasoning.
Indeed, Robbin gives away one of the basic methods
that mathematicians use to obtain formal proofs. The
actual formal theorems are produced by first establish-
ing the informal theorems and then translating them
into formal proofs. This is necessary because there are
numerously many formal proofs that can be produced
by such an axiom system. We cannot know which to
select unless the selection is based upon a procedure
that includes content. Formal symbol strings have no
content. Further, it is the necessary elements in the
informal portion of the Gödel methods that leads to
the construction of the language RA.

What one obtains by this process is a “more” formal-
ized proof of a new formal theorem H. Of course, H
has no meaning unless we interpret the formal symbols.
Interpreting H in terms of the informal rules yields the
statement “If RA is simply consistent, then there exists
a formula J in the formal language of RA that is not a
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formal theorem of RA” which is the informal state-
ment of the first part of Gödel’s theorem. The formal
statement J that cannot be formally proved, when
interpreted, has the same meaning as G. Once again, it
can be informally argued that the formula J, when
interpreted, is an informal natural number theorem
(Robbin, 1969, p. 115), but is of no interest to natural
number theorists.

There are other approaches to incompleteness and
formal consistency that are considerably different from
the above approaches. One is the semantical (algo-
rithmic) approach of Uspenskii (1974), another is the
model-theoretic and tree approach that appears in
Smorynski (1977). But the most startling result was
obtained in 1977. First, I mention that Feferman (1960)
showed that whether or not one can formally prove by
means of a formal axiom system the concept of consis-
tency depends upon how one formalizes the definition
of consistency. In discussing the Paris and Harrington
(1977) result, we assume that the concept of consistency
has been formalized in the usual way so that Gödel’s
Second Theorem can be used. Paris and Harrington
first prove informally a theorem about modern number
theory that adds a great deal of content to this informal
theory and that seems to be relevant to computer
construction. This informal theorem is not related to
the methods of mathematical logic. However, they
also show that this informal theorem cannot be a formal
theorem for any formal axiom system such as S or RA.
It is the first nontrivial Gödel-type theorem ever dis-
covered. The technical evidence continues to suggest
that there are informal human thought processes that
cannot be duplicated by a man made machine.

Thought Processes
It is rather obvious that a formal language can be

considered as a proper subset of a metalanguage. Fur-
ther, there is a metaworld that includes as objects in-
formal entities, informal mental processes as well as
formal entities and the formal logical processes. Let
M1 denote the first-order metaworld. Let L1 denote the
formal entities of a first-order logic as well as the
formal first-order processes. The symbol “ ⊂ ” denotes
“subset but not equal to.” Then we have that L1 ⊂ M1. I
have mentioned the idea of second-order logic. Before
we have second-order logic, we have a metalanguage.
Before we have a second-order language and the
second-order formal logical processes, we have a sec-
ond-order metaworld M2. The symbols used, formula
constructed and the formal first-order logical proce-
dures can be so defined as to form a proper subset of
second-order logic (i.e. L1 ⊂ L2). In this case, all of the
informal algorithms used to describe second-order logi-
cal processes, when restricted to the first-order lan-
guage, describe all of the first-order processes. This
yields that L1 ⊂ L2 ⊂ M2 and M1 ⊂ M2. One continues
up the scale of the logical hierarchies and defines, by
induction, the nth-order logics and nth-order formal
logical processes Ln by using the nth-order metaworld
Mn. This yields finite sequences L1 ⊂ L2 ⊂ ... Ln ⊂ Mn,
and M1 ⊂ ... ⊂ Mn. Significantly, the nth-order meta-
world is always the upper bound for the Ln. There is
one common feature for each Mn. The same informal
mathematical reasoning takes place internal to each
Mn, but external to Ln. Why? Because a Gödel-type

formula relative to Ln and determined by an appro-
priate axiom system Sn can be interpreted in Mn in the
same manner as in the first-order case. This is accom-
plished by an informal argument using the common
mathematical reasoning processes.

This logic-language hierarchy is analogous to what
takes place within computer science. The basic algo-
rithm-like rules for computer language construction
and how to use such a computer language to construct
computer programs first requires a metalanguage that
contains the computer language as a proper subset.
And it also requires informal reasoning on the part of
a student to construct a computer program. As men-
tioned in the introduction, incompleteness and related
results are relative to the clash between formalized
concepts and algorithms and those informal processes
of human thought that are often based upon intuition,
ingenuity, reflection and probably vague notions that
cannot be verbalized. How did I arrive at this very
significant conclusion?

I have often been asked what is abstract mathe-
matical research? Except for teaching, what do research
mathematicians do to earn their keep? How does one
learn to do what often appears to be an art rather than
a science? I can only discuss my personal thirty years
of experience with creating new mathematical results—
results that number well over 2,000—and how this
experience correlates not only to incompleteness results
within the above logic-language hierarchy but also to
the closely related decision problems.

Shortly after Gödel’s Incompleteness Theorem ap-
peared, mathematicians realized that the basic reason
that Gödel’s result could be established using the
Hilbert approach was in the method used to describe
informally the algorithm-like rules for formal language
construction and formal deduction. Turing (1936-1937)
proposed what might be considered a new way to
describe informally the necessary algorithms—the
famous Turing Machines. Post (1936) presented a tech-
nique for algorithm description. Markov (1954) de-
scribed his algorithms. Using computer terminology,
Lambek (1961) and Melzak (1961), among others, de-
scribed what are called register machines. Register
machines are more powerful than any actual computer
since these register machines have unbounded memory.
Then Cook (1971) described the random access ma-
chines. Every such attempt to describe informally an
algorithm has been shown to be modeled by the par-
tial recursive functions or relations of informal number
theory. Again using the discipline of mathematical
logic, it can be shown that if descriptions for a repeat-
able algorithm are modeled by Gödel-type recursive
objects (Robbin, 1969, p. 126) or modeled by partial
recursive objects (Manaster, 1975, p. 138), then there
can be no algorithm producing description for a set
of rules that can be used to determine whether or not
an informal statement about number theory is an in-
formal theorem. But counter to this negative result, as
mathematicians have known for hundreds of years,
what differentiates the expert mathematician from
others is the ability to select a theorem, prior to con-
structing its proof, from numerously many informal
statements. This is yet stronger evidence that certain
human mental processes cannot be duplicated by a
man made machine.
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Expert Witnesses and Creation-Science
Informal mathematics is done in a portion of a meta-

world such as Mn. When a theorem is proved, it can
then be translated into an Ln. Computers can be pro-
grammed to follow the rules of Ln and check the
correctness of the informal proof as it has been formal-
ized. As implied at the end of the previous two sections
of this article, there appears to be one area of mathe-
matical experience that cannot be replicated by such
machines. Although the above negative results are sug-
gestive, they do not present the strongest evidence.
The simple reason is that no one has ever been able to
describe, in naturalistic terms, the mental processes
involved in such a prior selection. When I see an in-
formal statement with terms taken from an informal
mathematical theory, I cannot describe the processes,
in natural terms, that my brain undergoes that allows
me to select one of the two statements “This statement
is a theorem that I can prove.” Or, “This statement is
not a theorem, so don’t try to prove it.” If I could
describe the processes, I could train individuals to
become very successful mathematicians. If I select the
first statement, then the consuming problem becomes,
“How do I construct an acceptable proof?” Dreyfus
(1993/94, p. 8) has Concluded that “[A]n expert . . .
intuitively sees what to do without applying rules.”
Dreyfus agrees that the rules cannot be described in
the required manner and, hence, no computer can
successfully become an expert theorem selector, proof
creator or an expert in anything. However, I disagreed
with Dreyfus’ definition for “intuition” which he claims
is a process of searching, for example, among all the
previously constructed proofs of which I have knowl-
edge and finding one that will fit this particular situa-
tion. This is simply not true. It is a fact that I have
constructed informal proofs the structure of which I
had never encounter previously.

This kind of indescribable selection from a poten-
tially infinite list is actually practiced by most indi-
viduals, but for a Christian and, especially, members
of the creation-science community, there exists a rea-
sonable explanation. But this explanation does not yield
a materialistic description for such a selection process
and would not be accepted by secular science. This is
especially so when Genesis 1:1-2 is selected as a literal
description for the creation of our universe over numer-
ously many other naturalistic statements. “He is the
source from which all your reasoning power comes: . . .”
and “He lends us a little of His reasoning powers and
that is how we think: . . .” (C. S. Lewis, 1960, pp. 52, 60)
For a Spirit indwelled Christian, the scriptures add an
additional aspect to these materialistically indescribable
processes. “But the anointing which ye have received
of him abideth in you, and ye need not that any man

teach you: but as the same anointing teacheth you all
things, and is truth, and is no lie, and even as it hath
taught you, ye shall abide in him.” 1 John 2:27
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Quote: Where Have All The Dinosaurs Gone?
Finally, although it is not crucial to the central thesis, comes the nagging problem of the lack of any dinosaurs

surviving into post-Cretaceous times. If cold was responsible for their annihilation, even if it accompanied the
initial burst of radiation from a nearby supernova, why did dinosaurs not persist in the warmer equatorial regions?
Is it conceivable that the entire globe was subjected to intense cold? It seems unlikely. Even though both land
masses in the northern hemisphere, America and Eurasia, were situated in middle and high latitudes in late
Cretaceous times, and were bordered to the south by the Tethys Ocean, South America and Africa were more
favourably situated climatically. The abruptness, ubiquity and severity of the Cretaceous extinctions makes it
increasingly difficult to dismiss a cataclysmic theory.
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