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Introduction
J.B.S. Haldane (1957) introduced the cost of substitution 
concept, though its usage became hampered by various 
confusions, and it eventually fell into common disuse. It was 
criticized for requiring constant population size, and constant 
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selective values, and for its reliance on “genetic death” and 
“genetic load,” whose physical interpretation is dubious. Such 
issues severely limited its deployment. Those difficulties were 
addressed and eliminated in ReMine (2005), which clarified 
cost theory and generalized the cost of substitution to have a 
concrete physical interpretation, without reliance on genetic 
death or genetic load, and while allowing fluctuations in any 
parameters. This paper applies that conceptual clarification 
to obtain more precise mathematical results. 
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For any given evolutionary scenario, cost theory calculates 
the required reproduction rate (referred to as the “cost of evolu-
tion”) and compares it with the species actual reproduction 
rate (referred to as the “payment”). If the species cannot “pay 
the cost,” then the scenario is not plausible. That concept 
is general, and can apply to any model of any evolutionary 
scenario, because they all require some level of reproduction 
rate. For ease of comprehension, calculation, and discussion, 
cost theory partitions the cost of evolution into a sum of vari-
ous costs, with each cost named according to its specific role. 
Thus, the cost of substitution is one of many costs that each 
add extra reproduction rate to the amount required by the 
scenario (ReMine, 2005).

Evolutionary theory requires that some traits originate 
as rare beneficial mutations and then, through reproductive 
means, these increase in number of copies. This increase 
requires extra reproduction rate. Under the clarified defini-
tion, the cost of substitution (CS) is the extra reproduction 
rate required to increase a trait (or traits) at the rate given by 
an evolutionary scenario. This paper uses that clarified cost 
concept to study single substitutions (non-overlapping in time), 
under genetic circumstances of broad interest (the same cases 
studied by Haldane, 1957), and derives equations that are 
more general, more precise, and well-grounded in concrete 
physical principles. 

Let Q be a specific genotype. At the start of generation i, 
let P be the “effective starting count”—the effective number of 
individuals who produce genotype-Q progeny. As the cycle of 
that generation comes to a close, let P´ be the “ending count” 
of genotype-Q individuals due solely to the reproduction of 
the former group. (Throughout this paper, a primed quantity, 
such as P´, denotes a quantity as the generation comes to a 
close.) The increase is ∆P = P´-P. Then the cost of substitution 
for genotype-Q, in generation i, is:

 (1)

Next this equation is restated in terms more traditional to 
population genetics. For generation i, define the following 
variables. Let Ne be the effective breeding population size. Let 
the population growth factor be G=Ne´/Ne, (which is 1.0 when 
the population size remains constant). For calculating the cost 
of a given genotype, let g be its effective starting frequency at 
the start of generation i, and let g´ be its ending frequency at 
the end of generation i. These are given by: g=P/Ne , and g´ 
=P´/Ne´. Restating equation 1: 

 (2)

The total cost of substitution (the “total cost”) merely 
sums Costi over all the generations of the substitution.

 (3)

The total cost of substitution is later divided by the average 
number of generations per substitution, to obtain the average 
cost per generation (CS)—which is a focus of concern in cost 
arguments. 

Next the equations for the cost of substitution are derived 
under various genetic circumstances, together with a method 
for iteratively calculating the total cost of substitution. In each 
case, the method is accurate even when the selection coeffi-
cient is large and when the parameters are arbitrarily changed 
each generation (unlike the traditional concept, which is too 
narrowly defined). 

In all the following cases, A is the substituting allele, and 
a is the old-type allele, with frequencies p and q, respectively. 
The substitution’s starting frequency is p0; this is the frequency 
at the beginning of the entire substitution. (Note: p0 is different 
from the “effective starting frequency” of a given generation i.) 
Genotype growth is specified by selection coefficients, where 
0<s≤1. All cases assume random mating (except for the in-
breeding fraction f). These are the same genetic circumstances 
studied in Haldane (1957). 

To calculate the cost of a given genotype in a given gen-
eration, I am using its effective starting frequency and ending 
frequency. Throughout this paper these quantities are enclosed 
in boxes for easy identification.

Haploids, clonal, or self-fertilizing 
organisms, or for maternally inherited 
cytoplasmic characters

 (4)

That gives the new allele frequencies: 
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 (5)

By equation 2:

 (6)

Equations 3, 5, and 6 allow iterative calculation of the total 
cost of substitution, while allowing changes in any parameters 
at the start of each generation. With parameters held constant, 
results are shown in Graph 1. 

Diploids
In diploids, Mendelian segregation (in combination with some 
mating scheme, such as random mating or inbreeding) can 
affect the genotype frequencies, while tending to leave allele 
frequencies unaffected. Such change is due solely to the pas-
sive remixing of alleles at the gene level, and does not require 
extra reproduction rate from whole-bodies; therefore we do not 
tally it into the reproduction rate that whole-bodies are required 
to produce. So, we disallow it from our cost computation, that 
is, we calculate the cost after the effects of the mating scheme 
and Mendelian segregation have been allotted.

The adult population has a reproductive capacity, which 
is redistributed toward progeny of each given genotype at a 
predictable rate. That distribution is given by the “effective 
starting frequencies” of the genotypes, as follows:

 (7)

That is, a fraction (gAA) of the population’s reproductive capac-
ity goes toward producing the AA genotype. Another fraction 
(gAa) goes towards producing the Aa genotype. And so forth.

As the cycle of one generation completes, let the genotypes’ 
actual “ending frequencies” be labeled as follows: 

 (8)

Each genotype has its own cost, given by equation 2 as:

 (9)

 

 (10)

 (11)

I am merely applying equation 2 to each genotype after 
discounting the passive redistribution effects of mating and 
Mendelian segregation. In this way, I calculate only the re-
quirements on the reproduction rate of individuals (whole-bod-
ies)—the cost. The producers of a given genotype are required 
to pay the cost of that genotype. It is usually sufficient to focus 
solely on the greatest cost, as this almost always forms the most 
stringent test of the scenario, thus:

 (12)

For a well-behaved substitution, the Cost_AA i always 
dominates. Therefore, 

 (13)

The following case studies demonstrate this method. 

An Autosomal Locus in a Diploid
The diploid cases allow dominant and recessive substitutions, 
specified by recessivity h, where 0 ≤ h ≤ 1. When h=0 this 
represents a fully dominant substitution.

Graph 1: Haploids
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Graph 2: Diploids with p0 = 10-2
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Graph 3: Diploids with p0 = 10-3
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Graph 4: Diploids with p0 = 10-4
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Graph 5: Diploids with p0 = 10-5
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 (14)

That gives the new genotype frequencies. The new allele 
frequencies are:

 (15)

By equation 9 and the above boxed quantities:

 (16)

The total cost of substitution can be iteratively calculated 
by equations 13, 15, 16, while allowing changes in any pa-
rameters at the start of each generation. With parameters held 
constant, results are shown in Graphs 2 through 5.

An Autosomal Locus in a Diploid  
with Inbreeding
Assume an inbreeding coefficient f, (0 ≤ f ≤ 1), where a fraction, 
f, of the population mates only with its own genotype, and the 
remainder of the population mates randomly. 

Combining the effects of random mating and inbreeding, 
the effective frequency of reproducers for each genotype is 
obtained:
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where the right-hand side is:

 (17)

Normalize to obtain new genotype frequencies:

 
(18)

Apply equation 9. 

 (19)

Equations 13, 17, 18, 19 allow iterative calculation of the 
total cost of substitution, while allowing changes in any pa-
rameters at the start of each generation. With parameters held 
constant, results are shown in Graphs 6 through 9. 

For additional insight, examine a fully dominant substitu-
tion, while allowing any inbreeding fraction f, (0 ≤ f ≤ 1). 
Define PA as the number of copies of allele A at the start of 
generation i. So, PA = p·2Ne, and at the end of the generation 
PA´ = p´·2Ne·G, for an increase of ∆PA = p´·2Ne·G - p·2Ne. (By 
equation 12, Costi = Cost_AAi. Using h=0 with equations 17, 
18, and 19, and the identity p2+pq=p, it is easily shown that 
Costi/∆PA = 1/PA.) Therefore:

 (20)

Thus, in any given generation, the cost of substitution 
(Costi) is given by the percent increase in the number of copies 
of the substituting allele (regardless of the number of copies 
of the old allele). This happens to be the same equation as 
in haploids, and because of that equality, a proof previously 
established for haploids (ReMine, 2005, appendix) applies to 
this case in diploids, and the following result is proven. For a 
fully dominant substitution (with or without any amount of 
inbreeding fraction f, and allowing a non-constant population 
size), for a substitution of any given duration, the minimum 
total cost of substitution is achieved only when the cost each 
generation (Costi) is constant throughout the substitution. 
In cases of haploids, or diploids with full dominance, cost 
constancy provides the minimum total cost for a substitution 
of any given duration. This proof opposes the notion that the 

Graph 6: Diploids with inbreeding, 
s=.01, h=1
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Graph 7: Diploids with inbreeding,
s=.01, h=.95
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Graph 8: Diploids with inbreeding,
s=.01, h=0.9
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Graph 9: Diploids with inbreeding,
s=.01, h=0.8
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total cost can be lowered by arbitrary fluctuations in selection 
coefficients (as in some versions of soft selection), or fluctua-
tions in population size. 

A Sex-Linked Locus in a Diploid
For a sex-linked locus, males and females have different 
selection coefficients (sm and sf) and different costs. Assume 
the males to be the heterogametic sex, but the results are the 
same (only swapped) if females are so. Define the male and 
female allele frequencies: (pm+qm=1) and (pf+qf=1). We here 
assume the A allele is neutral or beneficial in both sexes, and 
disallow less fortunate circumstances (such as beneficial in one 
gender and harmful in the other). Let the female population 
size have a growth factor of Gf, and for the male population it 
is Gm. Assume male and female progeny are produced at the 
same rate (a sex ratio of 1:1), as is ordinarily the case. 

For the case of female progeny, random mating produces 
the generating function, (pm+qm)(pf+qf)=1, which determines 
the genotype frequencies given in equation 21.

 (21)

 (22)

This is normalized to obtain the new genotype frequencies 
for females:

 (23)

The new allele frequencies for females are:

 (24)

Applying equation 9 gives the cost for genotype AA females. 
This is the extra reproduction rate necessary to produce enough 
genotype AA females to satisfy the scenario (including males 
too, at a progeny sex ratio of 1:1). 

 (25)

In the case of male progeny, for alleles A and a, the males 
are effectively haploid. Male progeny inherit this chromosome 
from their mother; therefore pf is the effective frequency of 
mating that produces the A genotype in male progeny. 

 (26)

 (27)

This is normalized to obtain the new genotype frequencies 
for males:

 (28)

The new allele frequencies for males are:

 (29)

Applying equation 2 gives the cost for genotype A males. 
Physically this is the extra reproduction rate necessary to pro-
duce enough genotype A males to satisfy the scenario require-
ments (including females too, at a progeny sex ratio of 1:1).

 (30)
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The scenario requires the larger of the two costs, therefore: 

 (31)

The total cost of substitution can be iteratively calculated 
(from equations 3, 22, 24, 25, 29, 30, and 31), while allowing 
changes in any parameters at the start of each generation. 
With parameters held constant, results are shown in Graphs 
10 through 13. 

Haldane (1957) assumed tiny s-values (sm & sf → 0+), where 
the substitution is very slow, with ample time for allele frequen-
cies to equalize between the sexes, so he assumed pm=pf. Unlike 
Haldane (1957), my iterative calculation allows the sexes to 
have unequal allele frequencies, and their appropriate values 
are recalculated each generation. 

The sex with the higher selection coefficient tends to 
dominate the substitution process. When the heterogametic 
sex (male in this study) has the higher selective value (sm) 
(as in Graph 10), then the total cost tends to be haploid-like 
and depends little on the recessivity in females. On the other 
hand, when the female selective value (sf) is the higher (as in 
Graph 11), then the cost takes on the behavior of diploids—for 
example, the cost increases rapidly with recessivity h. (Note: If 
the substituting allele is beneficial in one sex, and detrimental 
or heterosis in the other, then the total cost of substitution will 
be higher and its behavior will be more complex. However, 
the cost interactions between the two sexes are too numerous 
for discussion here.) 

For scenarios with constant male and female population 
sizes (i.e., Gf =Gm =1), the sex with the lower cost will have 
some reproduction rate leftover. The leftover must be ac-
counted through elimination of individuals of that gender; 
otherwise it would cause that gender’s population size to 
increase (making Gf >1 or Gm >1). (Also the elimination 
must be accounted without altering allele frequencies for that 
gender, which is reserved for the selection coefficients.) In 
short, the leftover individuals of that gender must be elimi-
nated, even though some of them possess the substituting 
allele—their production is wasted. On the other hand, when 
the costs for the two sexes are equal (such that Cost_A_males i 
= Cost_AA_females i), then there is no leftover to waste, so 
the situation is more efficient at converting the reproduction 
rate into higher growth for the substituting allele—and this 
reduces the total cost of substitution. This higher efficiency 
is seen by the slight dip in total cost at the left end of Graph 
12, which occurs when the costs for the two genders tend 
to be equal throughout the substitution. When selection 
coefficients for the two sexes are always equal, as in Graph 

Graph 10: Diploids with sex-linked locus, sf =0
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Graph 11: Diploids with sex-linked locus, sm =0, p0 =10-4
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Graph 12: Diploids with sex-linked locus, sm=.01, p0 = 10-4
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Graph 13: Diploids with sex-linked locus, sm=sf, p0 =10-5
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13, then the total cost is lower than when one selection coef-
ficient is always zero, as in Graphs 11 or 12, but still higher 
than cases without the sex-linked locus. 

Comparison with Haldane’s Cost Concept
Haldane (1957) defined the cost of substitution in terms of 
“genetic death” (originally called “selective death”), which has 
been a source of much confusion. He did not give an explicit 
physical definition of genetic death; instead he gave a math-
ematical equation for it, a different equation for each specific 
case. In each case, his genetic death concept is identified as 
the amount subtracted from 1 on the far right-hand side of my 
equations 4, 14, 17, 22, and 27. In effect, that is how Haldane 
obtained his equations for genetic death. For example, for an 
autosomal locus in a diploid, his equation is 2hspq+sq2 (see it 
on the right side of my equation 14), which he interpreted as 
the genetic deaths of the heterozygote (2hspq), plus the genetic 
deaths of the disfavored homozygote (sq2). 

As pointed out in ReMine (2005), Haldane’s genetic death 
concept exists only between the mathematical steps of (1) selec-
tion and (2) normalization. But in nature those happen physi-
cally in one event, not in separate steps. Therefore, Haldane’s 
genetic death concept is a mathematical phantom that does not 
exist in physical reality. For this and many additional reasons, 
genetic death has been a continual source of confusion.

My cost concept uses quantities (enclosed in boxes here) 
that appear immediately before selection is applied and im-
mediately after normalization is applied. Thus, these values 
straddle the line used by Haldane. Unlike Haldane, I use 
quantities (the genotype frequencies enclosed in boxes) whose 
physical meaning is concrete, and whose use is already ubiq-
uitous in population genetics. I suggest his concept of genetic 
death is physically unclear and should be abandoned.

Haldane’s concept worked correctly only under his two as-
sumptions: (1) constant population size, and (2) small selection 
coefficients (s → 0+). His 1957 paper studied the same cases 
examined here. For each case, and for each generation, after 
applying Haldane’s two assumptions, my cost of substitution is 
identical to his. (That is, under his two assumptions, my cost 
equations 6, 16, 19, 25, and 30 reduce to his cost equations 1, 
5, 10, and the second equation on his page 518.) Under his 
two assumptions, my cost each generation is identical to his, 
therefore the total cost of substitution is also identical. How-
ever, my cost equations for any given generation are accurate 
for all selection coefficients (even large selection coefficients), 
and for fluctuations in any parameters (such as population 
size)—whereas Haldane’s equations are not. 

In the case of a sex-linked locus, Haldane’s focus on ge-
netic death led to error. In each generation, he calculated the 
genetic deaths of disfavored males, and totaled that over the 

entire substitution. He did likewise for females. Apparently to 
calculate the average rate of genetic death, he then averaged 
those two totals together (instead of taking the larger of the two, 
as in my equation 31), to obtain his total cost of substitution. 
The genetic death concept focuses on death (not reproduction 
rate), so it failed to inform Haldane that the costs for males 
and females are linked together, because male and female 
progeny are produced at the same rate. This is yet another 
example of how Haldane’s concept of genetic death caused 
confusion and error.

Discussion
Under the above variety of genetic circumstances, the param-
eters were held constant, and the graphs display the total cost of 
substitution. Each curve plots 201 data points, (200 intervals), 
equally spaced visually across the horizontal range. In Graphs 
1 through 5, there is a high cost impulse at s=1, which goes 
off-scale vertically. 

The graphs show that the total cost increases with selec-
tion coefficient s. (That holds for all cases, except for some 
complicated interactions involving a sex-linked locus in dip-
loids, as discussed above.) The traditional total cost formulas 
assumed infinitesimally small selection coefficients (s → 0+), 
and therefore underestimate the total cost in realistic situations. 
However, the underestimate is less than ten percent error as 
long as s<0.17, which covers the most typical evolutionary 
substitutions.

The total costs for “haploids” and “fully dominant substi-
tutions in diploids” are nearly identical (so only the former is 
graphed here). They diverge from each other only slightly as 
the selection coefficient increases, with diploids having the 
slightly lower total cost. Using the haploid case as a refer-
ence, the diploid case has lower total cost by no more than 
1.4 percent (9.2 percent) for all selection coefficients less 
than 0.2 (0.8). 

Traditionally the total cost of semi-dominant substitutions 
(h=0.5) is given as double that of dominants (h=0). That is 
accurate to within ten percent for selection coefficients s<0.35, 
according to these results. 

It is known that almost all beneficial mutations fail to 
substitute; instead they are eliminated by genetic drift without 
ever reaching fixation. In such instances, they only partially 
substitute within a population, and they incur a portion of the 
total cost of substitution. Even though such substitutions are 
unsuccessful, they are nonetheless part of the scenario, and 
they incur a cost that the species must pay if the scenario is to 
be plausible. Haldane did not account this cost of unsuccess-
ful substitution (CU). When a single beneficial mutation is 
lost, this cost may be small, but it becomes significant when 
multiplied by its overwhelming prevalence in nature. Kimura 
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and Maruyama (1969) estimated that this adds 2 to the cost 
of each successful substitution. Their calculation should be 
revisited, especially in light of: (a) recent clarifications of the 
cost concept, and (b) modern measurements concerning the 
mutation rate and the frequency of nondominant mutations 
(which have a high cost of unsuccessful substitution).

Of special concern is the high cost of recessive substitu-
tion. Their total cost is quite high, (easily in the thousands), 
and substantially constant over any selective value s. Graphs 6 
through 9 show the effects of inbreeding, which may dramati-
cally lower the cost of recessive substitutions. For example, at 
a starting frequency of p0=10-5 and no inbreeding (f=0), the 
total cost is 100,000, but is reduced to 7,000 by an inbreeding 
fraction, f=0.001. However, for a high starting frequency of 
p0=10-2, that same inbreeding fraction has virtually no effect. 
In other words, a given level of inbreeding may produce dra-
matic cost reductions when starting frequencies are low, but 
at high starting frequencies there is scarcely any reduction. 
This is shown in Graph 6.

For the same reason, however, inbreeding simultaneously 
increases costs. Inbreeding causes an increased production of 
homozygotes that express the beneficial recessive mutation and 
aid its substitution. Thus, some beneficial recessive mutations 
(that would be lost at lower cost under no inbreeding) will suc-
cessfully substitute under inbreeding—thus incurring a high 
cost of substitution. Also, some beneficial recessive mutations 
(that would substitute only slightly under no inbreeding) will 
substitute further under inbreeding—thus increasing the cost 
of unsuccessful substitution. In other words, it is not imme-
diately obvious whether inbreeding will increase or decrease 
the costs associated with substitution, or by how much. The 
role of inbreeding is a double-edged sword that cuts in both 
directions, and needs further research.

The costs derived in this paper are mechanical and un-
avoidable. In realistic situations the actual cost of substitution 
can be higher, but cannot be lower. The equations give a 
lower bound, regardless of the type of selection (such as “soft 
selection” versus “hard selection”), and regardless of environ-
mental change. This lower bound in any single generation (as 
shown in equations 6, 16, 19, 25, 30, and 31) is independent 
of those factors, and therefore so is the total, summed over all 
generations. This means that, contrary to common assumption, 
environmental change (such as employed in Felsenstein, 1971 
and 1972), and soft selection (such as employed in Grant and 
Flake, 1974, and Wallace, 1991) cannot even slightly reduce 
cost problems for single substitutions. Those errors were caused 
by confusion factors identified in ReMine (2005), such as 
genetic death, genetic load, extinction, and the environment. 
Those factors are largely irrelevant to the central issue, which 
is the growth (in number of copies) of the substituting allele, 
and the extra reproduction rate necessary to achieve it. 

Haldane (1957) estimated that the average value for the 
total cost of substitution is 30. To rationalize that low figure, 
he employed an environmental-change scenario to bypass 
the earliest stages of substitution, where most of the total cost 
would ordinarily be incurred. The scenario (given in Haldane, 
1957 and 1961) assumes that neutral mutations and slightly 
deleterious mutations occasionally drift upward to maintain a 
pool of these at elevated frequencies—call these “pool muta-
tions”—and when the environment changes, some of these are 
converted to beneficial, which then begin their substitution at 
an elevated starting frequency, thereby dramatically lowering 
their total cost of substitution. This scenario is awkward to 
justify for most substitutions (much less for all substitutions, as 
assumed by Haldane), and especially during multiple-concur-
rent substitutions, because the same environmental change 
alleged to start one substitution would likely disrupt or reverse 
the ongoing substitutions.

As discussed in ReMine (1993), the environmental-
change scenario tries to obtain a “free lunch” from nature. 
Environmental-change, like mutation, is random concern-
ing the organism, and therefore is far more harmful than 
beneficial. For every “neutral or slightly deleterious” muta-
tion that converts to “beneficial,” there will be vastly more 
converted to become more harmful, with these also tending 
to have a larger effect—for a net effect that is overwhelm-
ingly harmful. If one pool mutation converts from neutral 
to beneficial, this would be overwhelmed by thousands that 
become detrimental and must be eliminated—and precisely 
because these eliminations start at elevated frequencies, this 
increases the cost of mutation (which is the extra reproduc-
tion rate required for coping with the elimination of harmful 
mutations). That makes cost problems worse. In a similar 
way, for every pool mutation that converts to beneficial, there 
would be many beneficial alleles at fixation that convert 
to harmful, and must be substituted just to break even. To 
avoid a theoretical Ponzi scheme, almost all of these must be 
substituted by a directly new mutation (not a pool mutation), 
thereby incurring a full (non-discounted) cost of substitu-
tion, and usually resulting in a net fitness loss. When fully 
accounted, the environmental-change scenario makes cost 
problems worse. There is no free lunch.

In other words, Haldane gave poor justification for his 
figure of 30, and we must seek a more realistic figure, which 
will surely be higher. Even after removing the environmen-
tal-change scenario, the value of 30 implicitly assumes: (1) 
a nearly nonexistent role for recessive substitutions, (2) no 
cost for unsuccessful substitutions, and (3) a high reliance on 
small population sizes (which receive beneficial mutations at 
a much lower rate and slows down beneficial evolution). It 
is doubtful those assumptions are realistic or consistent with 
other considerations from evolutionary theory.
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Conclusions
Compared to the traditional cost derivations, the equations 
described in this paper are general-purpose, simpler, and easier 
to understand. The total cost of substitution is then calculated 
iteratively, generation by generation, for improved accuracy. 
This method allows arbitrary changes to any parameters at the 
start of each generation, which can be conveniently handled 
by computers. In addition, this method is transparently clear, 
whereas Haldane’s derivations are opaque.

Though the environmental-change scenario was tradi-
tionally used, it was never given a proper cost analysis. When 
fully tallied it actually makes the cost problems worse. The 
same applies to the concept of soft selection (at least for single 
substitutions). 

The following areas are suggested for further research in 
cost theory: the frequency and role of nondominant or recessive 
mutation, the overall effect of inbreeding, the cost of unsuc-
cessful substitutions, and the effect of unequal sex ratios at 
conception or in the breeding population. 

Most importantly, this paper calls for the average total cost 
of substitution (such as Haldane’s figure of 30) to be given an 
explicit justification within some widely accepted evolutionary 
model. The graphs and methods presented in this paper can 
help estimate it across a blend of circumstances anticipated 
in nature. 

Appendix: Notes on Haldane’s Derivations
Haldane’s equations for the cost each generation are typo-
graphically correct (Haldane, 1957). However, I detect the 
following typographical errors in his derivations for the total 
cost of substitution. Most of these are clearly typographical 
errors, because they disappear in his subsequent equations. 
Some of them, however, are in his final equations for the total 
cost of substitution, so researchers should be wary of that. (A) 
In the calculation prior to his equation 7, there should be a 
factor (1–2h) multiplying the second p0. (B) In his equation 
9, the first K in the denominator should be k. (C) In the cal-
culation following his equation 9, there should be an opening 
bracket immediately between the µ and the second natural 
logarithm, mated with a closing bracket immediately after the 
last parenthesis of that equation. (D) In his equation 11, it may 
be that the K should be 2K, because the missing “2” shows 
up again in his next equation. (E) In the equation before his 
equation 12, the sign before the ½ should be negative. (F) In 
his equation 12, the sign before his second natural logarithm 
should be negative. (G) In his equation 13 (in his equation 
for female, and in his separate equation for male), the first p0 
should be a factor in the denominator, not the numerator. 
For the reader’s convenience, my paper uses modern notation 
rather than Haldane’s. 

Haldane’s subsequent paper (Haldane, 1961) attempts to 
derive “more precise” cost equations when selection coeffi-
cients are not small. I regard that paper as a decrease in clarity 
and accuracy from his previous attempt (1957), and largely 
irrelevant to understanding cost theory today. Absent is his 
previous emphasis on “reproductive capacity,” which should 
be the central issue. Instead the 1961 paper focuses exclusively 
on genetic death, which should now be abandoned as unnec-
essary confusion. In effect, his 1961 paper takes each of his 
previous equations for genetic death (only this time allowing 
a large selection coefficient) and pursues the task of deriving 
a closed-form equation for its sum over all generations of the 
substitution (to obtain the total cost of substitution). The 
paper’s lengthy mathematical contrivances are opaque and 
conceptually ill founded. For example in haploids, in a given 
generation, his cost of substitution, sq, is accurate only for a 
small selection coefficient. When his 1961 paper imposes a 
large selection coefficient into that same equation, the result is 
useless or erroneous for its intended purpose (that of establish-
ing a limit on the substitution rate). His 1961 paper thereby 
arrives at erroneous cost equations, and mistaken conclusions, 
such as the notion of “negative cost.”
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