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Introduction
A detailed review of the theory behind the Lynden-Bell/Chol-
oniewski (LBC) method was presented by Hebert and Lisle 
(2016). In the LBC method, one plots the distance moduli μ of 
the Nobs visible galaxies within a survey against the absolute 
magnitudes M for those same galaxies (a demonstration plot 
for a “survey” of galaxies with Nobs = 10 is shown in Figure 
1). It should be noted that prior to using the method, each 
galaxy absolute magnitude should be K-corrected and each 
galaxy distance modulus μ should be replaced by μ + Kavg(z). 
Although this discussion follows the notation of Choloniewski 
(1987), it should be noted that neither Lynden-Bell (1971) nor 
Choloniewski (1987) explicitly mentioned the need to perform 
the K-correction in their papers.

Choloniewski (1987) showed that the number density of 
observed galaxies in μ-M space (actually, [μ + Kavg(z)]-Mcorrected 
space, to be more precise) may be expressed as
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The weighting ψ and d factors may be obtained by inte-
grating Eq. (1) subject to judicious choices for the limits of 
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Abstract

In order for cosmologists to discern the large-scale structure of the 
cosmos, it is necessary to determine the true distribution of galaxies 

in space. In order to do this, however, it is necessary to correct for the 
fact that some dim galaxies are too faint to be seen (the Malmquist bias). 
This correction is often obtained via a luminosity function, which gives 
the number density of galaxies (galaxies per unit of comoving volume) 
per bin of intrinsic brightness (or absolute magnitude bin). This review 
uses real data from the Sloan Digital Sky Survey to demonstrate one 
such method for obtaining the luminosity function, the Lynden-Bell/
Choloniewski method. 
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integration, as discussed by Choloniewski (1987) and Hebert 
and Lisle (2016). Once these weighting factors have been 
obtained, the luminosity function is given by
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where Vt is the total comoving volume of the galaxy survey.

The Sloan Digital Sky Survey
The Sloan Digital Sky Survey (http://www.sdss.org/ ) is a 
major survey of celestial objects that covers about 35% of the 
sky. The survey utilizes a 2.5 meter wide-field telescope at the 
Apache Point Observatory in New Mexico (York et al., 2000, 
p. 1580). This telescope is equipped with a CCD camera that 
can image the sky in five optical bands, as well as two digital 
spectrographs. In addition to this 2.5-meter telescope, two 
other telescopes were used in the process of calibrating photo-

metric magnitudes, a USNO 40-inch telescope and an SDSS 
photometric telescope (PT). More than 900 million unique 
objects (stars, galaxies, and quasars) have been detected at 
the time of the tenth data release in July 2013. Spectroscopic 
measurements have been made for 859,322 unique galaxies, 
permitting redshifts to be calculated for those galaxies (http://
www.sdss3.org/dr10/scope.php#opticalstats). Helpful websites 
for downloading Sloan data are http://skyserver.sdss3.org/dr9/
en/help/docs/default.asp and http://skyserver.sdss3.org/casjobs/.

The SDSS photometric system consists of five broad color 
bands, denoted as u, g, r, i, and z, which are designed to fa-
cilitate the detection of faint objects and provide coverage of 
the whole accessible range of optical wavelengths (3000 Å to 
11, 000 Å). 

SDSS Apparent Magnitudes
There are several different ways to estimate the apparent mag-
nitude of a galaxy in a given filter. Hence, one question that 
must be resolved before analyzing patterns in galaxy spatial 
distribution is this: Which is the best apparent magnitude 
system to use for such an analysis? 

The standard definition of apparent magnitude (or Pogson 
apparent magnitude) is given in terms of the flux (photons per 
unit area) within a specified wavelength range of a star or galaxy 
by the following formula:
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where f0 is a conventionally agreed-upon reference flux. The 
reference flux sets the zero point of the magnitude system and 
corresponds closely to the brightness of the star Vega. Though 
the apparent magnitude is easily estimated for stars, there is a 
problem with using this definition for galaxy surveys. 

Because galaxies are extended objects, rather than point 
sources, there are complications in attempting to determine 
their total flux within a particular band (such as their lack of 
well-defined “edges”). The apparent magnitude of a galaxy is 
defined to be that which it would have if all of its light were 
concentrated into a point. This is perfectly well defined in 
principle. But in practice, this can be very difficult to estimate 
with high precision because the sky itself is not totally dark and 
it is difficult to disentangle sky flux from galaxy flux, particularly 
near the dark and ill-defined limb (edge) of the galaxy. So, a 
number of different methods have been developed to give a 
reasonable and pragmatically workable estimation of a galaxy’s 
apparent magnitude.

One is by calculating the galaxy’s so-called Petrosian flux 
(Petrosian, 1976). The Petrosian flux and magnitude systems 

Figure 1. Plot of distance modulus μ versus absolute magni-
tude M for a simulated magnitude-limited survey containing 
ten observable galaxies. Of course, a real galaxy survey may 
contain many thousands of such galaxies. Note that the di-
agonal line is defined by the limiting apparent magnitude 
mmax of the survey, such that no galaxies are observed within 
the triangle above the diagonal line. Complications regard-
ing mmax and Mmax that are encountered in real galaxy surveys 
are discussed in the text.
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were designed to measure a consistent fraction of the galaxy’s 
total light, regardless of the galaxy’s distance and location. 
This is achieved by measuring galaxy fluxes within a circu-
lar aperture whose radius is determined by the shape of the 
(azimuthally-averaged) surface brightness profile I (r), which 
is the brightness for a standardized portion of the extended 
object. Surface brightness is usually measured in magnitudes 
per square arc second. Because radiative flux decreases with 
the square of the distance, while surface area increases with the 
square of the distance, the surface brightness is independent 
of distance. The SDSS survey uses a modified version of the 
Petrosian flux as described at http://ned.ipac.caltech.edu/help/
sdss/dr6/photometry.html#mag_petro. 

A second way is via the use of luminosity profiles. If one can 
fit a mathematical luminosity or brightness function, which 
describes the way in which the galaxy’s (azimuthally averaged) 
brightness varies with radial distance from the galaxy’s center, 
then one can obtain the total brightness (or equivalently, the 
total flux) of that galaxy by integrating this function over all 
possible brightnesses or luminosities (i.e., from zero to infin-
ity). The radially averaged brightness of an elliptical galaxy (as 
a function of apparent distance r from its center) is given by a 
de Vaucouleurs profile:
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where re is the radius of the galaxy’s inner disk contributing half 
the galaxy’s brightness and Ie is the brightness at that radius. The 
brightness of the disk of a spiral or lenticular galaxy is described 
by a decaying exponential:

0( ) exp( / )disk eI r I r r= −   (5)

Note that these two equations assume that the galaxy’s inclina-
tion to the observer has already been taken into account when 
obtaining these brightness functions.

Since spiral galaxies often consist of an ellipsoidal “bulge,” 
as well as a disk, the composite flux of a spiral galaxy can be 
modeled as a superposition of the de Vaucouleurs and exponen-
tial brightness profiles. Moreover, such a superposition can be 
used, without loss of generality, for galaxies that are primarily 
elliptical or that are disklike and yet lack a prominent central 
bulge. The composite flux of a galaxy was thus defined by the 
SDSS team to be:

(1 )composite deV expf fracDeVf fracDeV f= + −   

  (6)

Where fdeV and fexp are the de Vaucouleur and exponential 
fluxes, respectively, and fracDeV is the fraction of this compos-
ite flux due to the de Vaucouleur profile. Although one could 
conceivably generate more complicated models than this for 
certain extended objects, the SDSS team opted against this on 
the basis that such additional computational expense was not 
warranted for the bulk of detected objects. 

Once the flux has been obtained via one of these methods, 
it may be used to obtain the galaxy’s apparent magnitude m for 
a particular band. However, as noted earlier, there is a compli-
cation in attempting to use the traditional Pogson definition 
of apparent magnitude: calculated apparent magnitudes are 
subject to very large errors when f is comparable to the flux 
of the background sky. Because many galaxies are quite dim, 
this is a problem for galaxy surveys. In order to circumvent this 
problem, Lupton, Gunn, and Szalay (1999) devised a modi-
fied magnitude system based upon the inverse hyperbolic sine 
function. These “asinh” magnitudes are defined by
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where b is a “softening parameter” designed to minimize the 
noise in values of m. The value of b for the r-band is 1.2×10-10 

(http://classic.sdss.org/dr7/algorithms/fluxcal.html#asinh_ta-
ble). This is the apparent magnitude definition used by the 
SDSS survey after obtaining the galaxy flux (http://classic.sdss.
org/dr7/algorithms/photometry.html#mag_psf) via the methods 
discussed above. 

Once this flux was obtained, it was substituted into Eq. (7) 
in order to obtain the apparent magnitude. So-called cmodel 
magnitudes were calculated using a flux that was a best-fit su-
perposition of the de Vaucouleurs and exponential profiles. A 
similar model magnitude was obtained by choosing the better 
fit of the de Vaucouleurs and exponential profiles to obtain the 
flux, rather than a superposition of the two.

The optimal magnitude system depends upon the task 
being performed, but the SDSS team noted that the cmodel 
apparent magnitude seems to be the best overall choice due to 

“close to optimal noise properties” that make it an even better 
choice than Petrosian magnitudes (http://classic.sdss.org/dr7/
algorithms/photometry.html#mag_psf). However, the SDSS 
team noted that model magnitudes are the better choice for 
measuring the colors of extended objects such as galaxies.

In any case, the differences between the apparent magni-
tude systems are expected to be small. For instance, differences 
between cmodel and Petrosian magnitudes are only about 
0.05–0.1 mag for bright galaxies.



192 Creation Research Society Quarterly

Target Selection in the Main Galaxy Sample
This demonstration of the LBC method utilizes galaxies from 
the flux-limited main galaxy sample. The following is a brief 
summary of the main sample selection criteria provided in 
Strauss et al. (2002).

In order to simplify the selection process, only one limiting 
apparent (Petrosian) magnitude was used, rather than five. The 
SDSS team reasoned that this band should be either the r or i 
band, for the following reasons:
•	 K-corrections in an r (red) band or an i (far red) band tend 

to be smaller than those for other bandpasses.
•	 Galaxy fluxes are thought to be dominated by red stars.
•	 Inferred absolute magnitudes for the i and r bands are less 

affected by the phenomenon of galactic reddening than 
for other bands. 
The r band was finally selected over the i band since the 

sky background is dimmer and less variable in the r-band, 
thus providing a better contrast to enable easier detection of 
galaxies against the sky background. The method of Schlegel, 
Finkbeiner, and Davis (1998) was used to correct for galactic 
extinction, the absorption and scattering of electromagnetic 
radiation due to the presence of galactic dust. After making 
this correction, Petrosian r magnitudes were calculated. Then 
saturated, bright, or blended objects were rejected, and the 
limiting apparent magnitude was set at mlim, Petrosian = 17.77. This 
magnitude cutoff was chosen in order to obtain an average of 
at least 90 galaxies per square degree, as this angular galaxy 
density is believed to correspond to the depth at which galaxy 
number can vary substantially due to large-scale structure. 
Hence, this magnitude cutoff should facilitate the detection 
of large-scale galaxy structure that may exist.

However, surface brightness selection criteria were also 
imposed on the survey. Galaxies with a Petrosian half-width 
surface brightness (defined to be the average surface brightness 
within a circular radius containing half the Petrosian flux) less 
than or equal to 23.0 mag arcsecs-2 were included, although 
dimmer galaxies (higher surface brightness values) might also 
be included if they met other additional criteria. These surface 
brightness criteria were needed in order to ensure reliable 
spectroscopic results, which are necessary for an accurate de-
termination of redshift. A schematic illustrating the selection 
process is provided in Figure 5 of Strauss et al (2002).

Completeness of a survey is defined to be the fraction of ob-
served true galaxies that have been correctly identified as such 
(Ball and Brunner, 2010). By comparing galaxies identified by 
the SDSS survey to galaxies identified in the Zwicky catalog, 
the SDSS team estimated that the main galaxy sample had an 
overall completeness of more than 99% but that this complete-
ness dropped to 95% for brighter galaxies, due to “blending” 
with saturated stars. Note that the concept of completeness 
refers to the percentage of correctly identified objects, not the 

percentage of objects that have been detected! In other words, 
even with a survey completeness of 99%, it is quite possible 
that the percentage of detected galaxies (compared to the true 
number of galaxies within the bounds of the survey) could still 
be quite small due to Malmquist bias. Hence, even a complete-
ness of 99% does not remove the need for a luminosity function 
and selection function. The SDSS team estimated that nearly 
all (99.9%) spectroscopically observed galaxies in the main 
sample yielded successful redshift determinations. However, 
they estimated that 6% of galaxies were missed because of close 
angular proximity to a companion galaxy but that this could 
be accounted for by appropriate weighting of closely paired 
galaxies. Reproducibility of the sample was estimated at 94.5%.

A chart showing the galaxies in the main survey as a func-
tion of right ascension (RA) and declination (dec) is provided 
in Figure 2. Note that these celestial coordinates are given 
in the J2000.0 epoch (York et al., 2000, p. 1580; Hilton and 
Hohenkerk, 2004). The main ellipse of the main survey was 
chosen to maximize observing efficiency and to minimize 
the effects of galactic extinction (Strauss et al. 2002, p. 1811).

The Schechter Function
Galaxy luminosity functions are generally well characterized 
by a Schechter function (Schechter, 1976). Expressed in terms 
of absolute magnitude M, the number of galaxies per unit co-
moving volume per absolute magnitude interval dM is given by

 

Figure 2. Sky plot of galaxies within the main galaxy portion 
of the SDSS survey (10th data release).
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Where ϕ* is a normalization constant (in units of Mpc-3), 
α is a dimensionless constant that defines the slope of the 
function for the dim (high magnitude) portion of the graph, 
and M* is the absolute magnitude at which the Schechter 
function undergoes a rapid change in slope. Typical values 
of α are given by -1.5 < α < -1 (Dickey 1988), although some 
luminosity functions have values of α > -0.1 (Zucca et al., 2009, 
p. 1223). Simulated Schechter functions for various values of 
α are depicted in Figure 3.

In fact, one method of determining the galaxy luminosity 
function, the STY maximum likelihood method (Sandage, 
Tammann, and Yahil, 1979), simply assumes that the luminos-
ity function has a Schechter form and then proceeds to find the 
values of the parameters α and M* that provide the best fit to 
the data. The normalization ϕ* may be obtained from galaxy 
number counts within a certain magnitude band. However, it 
should be noted that this normalization constant is not truly 
needed to obtain the selection function S(z), since it is implic-
itly contained in both the numerator and denominator in Eq. 
(6) of Hebert and Lisle (2016) and thus cancels.

Solid Angles
In order to calculate a normalized luminosity function, one 
needs the comoving volume for the galaxy sample. This re-
quires an appropriate solid angle Ω for the survey (but see note 
at the end of this section). Though physicists and mathemati-
cians often measure solid angles in steradians (sr), the SDSS 
uses square degrees (see http://www.sdss3.org/dr10/), as this is 
more convenient for astronomers. The ratio between the two 
is given by:

4π steradians ≈ 41,253 deg2 (9) 

The solid angle of the survey shown in Figure 2 can be 
computed by integration and is also provided by the SDSS 
website. Once the solid angle has been obtained, the comoving 
volume of the survey is easily computed. The total solid angle 
for the tenth data release of the SDSS is cited as 14,555 square 
degrees ≈ 4.43 sr, which is a little more than 35% of the sky. 
However, the actual value of the solid angle is not critical, as 
it, like the normalization constant of the luminosity function, 
will “divide out” when calculating the selection function S(z); 
see Eq. (6) in Hebert and Lisle (2016).

Figure 3. Simulated Schechter functions for M* = -21.5 and 
α equal to (a) -0.8, (b) -1.0, and (c) -1.2. Galaxy luminosity 
functions often have Schechter forms. 
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Demonstration of the Method
One of us (Lisle) has written an extremely efficient, fast, and 
versatile IDL code that can calculate the luminosity function 
for a set of galaxies via a number of different methods, includ-
ing the LBC method. This demonstration uses galaxies from 
main Legacy survey of the tenth data release (http://skyserver.
sdss3.org/dr10/en/credits/creditshome.aspx). To optimize ac-
curacy, the code uses the r-band model apparent magnitudes 
when obtaining the color-dependent K-correction (Chilingar-
ian, Melchior, and Zolotukhin, 2010) but cmodel apparent 
magnitudes when calculating distances. Redshift values were 
restricted to 0.05 ≤ z ≤ 0.28 because this K-correction method 
had been tested for the r-band against direct K-corrections 
using galaxy flux spectra only for redshifts in this approximate 
range (Chilingarian, Melchior, and Zolotukhin, 2010, pp. 6–7). 
Galaxies having unreasonable color values (absolute value of 
the color greater than 3) were also excluded, as were quasars. 
In calculating comoving and luminosity distances, the standard 
values were used for cosmological parameters: Ωm = 0.27, ΩΛ = 
0.73, and H0 = 71.0. A small correction was applied to redshift 
values to account for the motion of our solar system relative to 
the CMB (implicitly accepting the assumption that the CMB 
is not a local phenomenon and represents an average reference 
frame of the visible universe). Before using the LBC method, 
one must first K-correct the survey’s absolute magnitudes. This 
means that one must make the transformations M → M – K and 
μ → μ + Kavg(z) for each galaxy in the survey, as discussed in 
Hebert and Lisle (2016) and Lisle (2016). Once this has been 
done, it is possible to follow Choloniewski’s original method.

Next, a plot of transformed μ values versus transformed M 
values should be produced (Figure 4) and inspected in order 
to decide upon reasonable values for mmax, Mmin and Mmax.

Determining mmax

Note that this plot differs from the basic form of Figure 1 in a 
number of significant ways. First, one might expect the diago-
nal line in Figure 4 to be very sharp and well defined, like the 
diagonal line in Figure 1. However, close inspection of Figure 
4 reveals that this diagonal boundary is somewhat “fuzzy.” This 
is due to the K-correction. The apparent magnitude cut must 
be applied before any K-correction, because it is the apparent 
brightness in Earth’s reference frame that determines whether a 
galaxy can be detected. Thus, two galaxies at identical redshift 
and identical apparent magnitudes may have two slightly differ-
ent absolute magnitudes, because they will have two different 
K-correction values. It may seem surprising that we would need 
to cut galaxies fainter than the limiting apparent magnitude, 
since these ideally should not have been included in the SDSS 
data set. But the SDSS cut is applied to the observed apparent 
magnitudes before any foreground contamination has been 

removed, whereas the final reported magnitudes have been 
adjusted to remove any such contamination. Thus, a galaxy 
significantly fainter than magnitude 17.77 could be included 
in the redshift survey if and only if it is very close in angle to 
a bright star, a nebula, or another brighter galaxy, causing the 
combined flux to exceed the threshold for inclusion. Since the 
LBC method tacitly assumes that no galaxies are detectable 
beyond the threshold, it has no way of dealing with these fainter 
galaxies. Therefore, they cannot be included in the analysis. 

Because we are using cmodel rather than Petrosian fluxes 
to calculate galaxy apparent magnitudes, the value of mmax will 
not be exactly equal to the Petrosian cutoff of 17.77. However, 
we do expect it to be close to 17.77, due to the small differences 
between Petrosian and cmodel apparent magnitudes.

The optimal value of mmax may be estimated by preparing 
a histogram of cmodel r-band apparent magnitudes (Figure 
5). From the histogram, one can see that most of the galaxies 
have cmodel apparent magnitudes less than ~17.8. The half-
maximum value is a good choice for the brightness threshold 
to be used in the LBC method—a value that is clearly less than 
17.77. An even more accurate analysis is possible that includes 
for observation bias (Lisle, 2016) yielding an optimal threshold 
of mr = 17.747. Hence, for purposes of this demonstration, we 
set the value of mmax in Figures 1 and 4 to be 17.747. 

Since the K-correction is used to estimate the absolute 
magnitude, both the distance estimate and apparent magnitude 
are unaffected; thus mmax is unaffected. Furthermore, since our 

Figure 4. Plot of μ’ = μ + Kavg (z) versus Mcorrected = M – K 
for galaxies within the main survey meeting our selection 
criteria. 
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transformation from μ to μ’ affects only the distance coordinate, 
this also has no effect on mmax. When the limiting magnitude 
is plotted as a function of absolute magnitude and distance 
modulus, as in Figure 1, the K-correction (necessary to obtain 
the most accurate estimate of absolute magnitudes) causes the 
diagonal line to become a curve, due to the nonlinear response 
of K as a function of distance. Shifting to the μ’ coordinate 
straightens this back into a diagonal line, allowing us to use 
the LBC method as is. 

Note also that one cannot simply take mmax to be the very 
dimmest apparent magnitude of the survey. Because a signifi-
cant number of galaxies have apparent magnitudes higher than 
this value, doing so would introduce a great deal of error into 
the determination of the luminosity function.

Selecting Mmin and Mmax

Now that mmax has been determined, we select appropriate 
values for Mmin and Mmax. This choice is somewhat arbitrary, 
though it makes sense to set these values to include most, if 
not all of the data. Note that it is conceivable that the survey 

may contain a small number of galaxies with anomalously low 
or high absolute magnitudes. There is no reason why these 
would have to be excluded from the analysis (providing they 
have survived the apparent magnitude cut), though we expect 
low statistical confidence in these extreme limits.

From Figure 4, we see that there are a small number of 
galaxies with absolute magnitudes less than ~ -25.0. There is 
no harm in setting Mmin equal to the (K-corrected) absolute 
magnitude of the very brightest galaxy in the survey, since there 
is no theoretical lower limit on Mmin and the LBC method is 
sufficiently robust to obtain an estimate for ϕ(M) even for very 
low (K-corrected) values of M. The solution in this magnitude 
range will be subject to very large errors, however, and should 
be considered unreliable. Likewise, Mmax may be set to the 
intrinsically faintest galaxy, or to mmax – μ›min, though the paucity 
of extremely faint (observed) galaxies will result in low statistical 
confidence on this end as well. 

Potential Complication:  
Galaxies with Equivalent Magnitudes

Choloniewski’s original method assumed that no two galaxies 
in the survey will have exactly the same absolute magnitude. 
Many galaxies in the SDSS galaxy survey, however, violate 
this condition. Hence this complication must be considered.

One might worry that it would be necessary to completely 
re-derive the recursion relation between ψk and ψk+1 found in 
Eq. (32) in our previous paper (Hebert and Lisle, 2016). How-
ever, this is not actually necessary. The fact that some galaxies in 
the SDSS survey have the same absolute magnitudes is a result 
of the limited precision of the survey; in reality, one does not 
expect any two galaxies to ever have exactly the same absolute 
magnitude. Hence, one could circumvent this difficulty by add-
ing extremely tiny random numbers to the survey’s K-corrected 
absolute magnitudes, random numbers that are much, much 
smaller than the precision of the recorded magnitude values. 
This would prevent any two galaxies in the survey from having 
exactly the same magnitude but without changing their values 
in any appreciable way. This would enable one to use the 
recursion relation as originally derived without modification.

However, even this is not really necessary. There are two 
keys to using the unmodified LBC method in this situation. 
The first key is to remember that the galaxies have already been 
sorted in order of increasing (K-corrected) magnitude. Hence 
Ck is not just equivalent to the number of galaxies inside the 
rectangle in our previous Figure 5; it is also equal to the number 
of galaxies that precede the kth galaxy in this sorted list. This 
alternate definition of Ck will hold true regardless of whether 
or not any galaxies share the same magnitude.

The second key is to recognize that although two or more 
galaxies may happen to share the same magnitude, they are still 

Figure 5. Histogram showing the number of galaxies in 
the main survey as a function of r-band cmodel apparent 
magnitudes. Since Petrosian apparent magnitudes are quite 
close in value to cmodel apparent magnitudes, it is not sur-
prising that most galaxies have apparent magnitudes less 
than ~17.7, since the Petrosian magnitude selection cutoff 
was set to 17.77 (see text). Closer analysis of the data shows 
that the half maximum of the this sharp peak occurs at mr 
= 17.747. Hence, for purposes of this demonstration of the 
LBC method, the value of mmax was set to 17.747. 
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characterized by distinct values of the index k. Hence, the sum 
on the left-hand side of Eq. (1) still contains Nobs terms, even 
though the magnitude values may not all be unique.

Now consider three galaxies (Figure 6) sharing the same 
magnitude M' (the reason why we are calling this magnitude 
M' rather than Mk as before is to prevent confusion, for reasons 
that should soon become apparent). We may integrate Eq. 
(28) in our previous paper (Hebert and Lisle, 2016) as we did 
before in order to obtain an expression for Ck, but this time 
we break the integration into two parts, the first part consists 
of the irregular gray region, while the second part consists of 
the thin, white vertical “sliver” at the upper right-hand side 
of our box. Integrating the left-hand side of Eq. (28) over the 
shaded region still gives us Ck, according to our new defini-
tion. Extending the area of integration to include the thin 
vertical sliver gives us one additional count due to the kth 
galaxy. Hence, integration of the left-hand side of Eq. (28) 
gives us Ck+1 as before. When integrating the right-hand 
side of Eq. (28), we do so all at once. Because each galaxy is 
characterized by a unique value of k (even when it shares the 
same magnitude with another galaxy), we still get the same 
result as before, obtaining our previous Eq. (31). Hence, the 
derivation for our previous Eq. (31) is still valid, provided that 
we use this new, more general definition of Ck, rather than 
Choloniewski’s old definition.

However, the derivation for our recursion relation also 
involved our previous Eq. (30), which contained a sum over j. 
Before we can be completely certain that our recursion relation 
will still hold, we must also make certain that the value of this 
sum is unaffected by galaxies with identical magnitudes. We 
do so by integrating this paper’s Eq. (1) over the thin vertical 
rectangle shown in Figure 7. Integration of the left-hand side 
simply gives us the number of galaxies having a magnitude 
of M' (in this particular example, three). Integration of the 
right-hand side yields
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But since all three galaxies have the same magnitude M', we 
expect all three values of the magnitude-dependent weighting 
factor ψ to be equivalent. Hence we obtain

Figure 6. Diagram showing the geometry used to obtain 
C (M’) when more than one galaxy has a magnitude of M’. 
Note that although we are here using Choloniewski’s original 
notation, these are actually K-corrected absolute magnitudes. 
Likewise, the distance moduli have been transformed ac-
cording to μ → μ + Kavg (z). Note also that our maximum 
absolute magnitude value Mmax is very close to mmax – μmin , 
as one expects from Figure 4.

Figure 7. Geometry used to obtain Eqs. (10) and (11) in 
the text when multiple galaxies share the same magnitude.
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which is the same as our previous result. Hence, we can 
continue to use our previous recursion relation without loss 
of generality. 

One can also look at it in another way. First, imagine 
that we have two consecutive galaxies (numbered k and k+1 
respectively) that have almost the same magnitude, with 
galaxy number k+1 being ever so slightly fainter than galaxy 
number k. And recall that C(Mk) is a count of all galaxies 
within the rectangle associated with galaxy k but excluding 
galaxy k itself. Now, if galaxy k+1 is only very slightly fainter 
than galaxy k, then it is highly probable that C(Mk+1) = C(Mk) 
+ 1; that is, the rectangle associated with the (k+1)st galaxy 
will have exactly one more galaxy in it (galaxy number k) 
than the rectangle associated with the kth galaxy. This is not 
a certainty, because there has been a very small change in 
distance modulus going from k to k+1, which implies that 
the top of the rectangle has been reduced slightly for k+1. 
So it is possible that one or more galaxies at the top of the 
rectangle for k are excluded from the rectangle for k+1. But 
since the change in M (or more precisely, the change in 
Mcorrected) was tiny going from k to k+1, the probability is low 
that any galaxies were lost. Moreover, that probability goes 
to zero in the limit as Mk+1 approaches Mk since the change 
in distance modulus goes to zero:

1
1lim ( ) ( ) 1

k k
k kM M

C M C M
+

+→
= +   (12)

Now consider two galaxies of equal magnitude. When 
sorted in order of decreasing magnitude, one will arbitrarily 
be placed in front of the other, such that one is assigned the 
number k and the next is assigned the number k+1. For these 
two galaxies Mk = Mk+1, meaning that they have the same 
horizontal coordinate. The key to using the LBC method with 
these galaxies is to use the above limit to ensure that the value 
of C(Mk) goes up by one as k goes to k+1. In other words, when 
two or more galaxies share the same right edge of the rectangle, 
we count all galaxies within the rectangle and the edge up to 
but not including the kth galaxy. The galaxy count C(M) will 
therefore go up by exactly one for each consecutive galaxy of 
identical absolute magnitude.

Results
The LBC method was used to obtain the luminosity function 
via Eq. (2). The K-corrected absolute magnitude range was 
divided into 300 bins in order to obtain the result in Figure 8. 
Note that the luminosity function shows the least amount of 
noise in the middle of the magnitude range. This is expected, 
since galaxy counts within this magnitude region are highest. 
The random error increases away from the middle section, and 
becomes largest at either magnitude extreme since very few 
galaxies have these extreme magnitude values.

For the same reason, values of ϕ(M) for very low absolute 
magnitudes (< -24.5) are erratic and are not shown. This version 
of the LBC method does not permit a formal analysis of the 
errors in the luminosity function (although one could presum-
ably use a jackknife method to do so), but another version of 
this method (Choloniewski 1986) does.

Potential “Pitfalls” for Future Research
A number of potential difficulties could complicate efforts to 
analyze galaxy patterns after compensating for the Malmquist 
bias using this method. First, there is the possibility that galaxies 
of different types may be characterized by different luminosity 
functions. In performing this exercise, we have used a single 

“global” luminosity function for all galaxies in the SDSS main 

Figure 8. Luminosity function obtained using the LBC 
method and data from the 10th release of the Sloan Digital 
Sky Survey. The solution for ϕ(M) is not shown at values 
of M < -24.5, as this part of the solution is subject to large 
errors due to the very small numbers of galaxies within this 
magnitude range.
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sample, regardless of galaxy type. However, Binggeli, Sandage 
and Tammann (1988) have noted that there are reasons to sus-
pect that luminosity functions may vary with galaxy type. Even 
if this is the case, however, one would still think that it would 
be possible to obtain a single “global” luminosity function for 
all galaxies within our local vicinity. Another possibility is that 
the shapes of luminosity functions may vary with local density. 
Binggeli, Sandage, and Tammann (1988) generally reject this 
possibility, although they acknowledge that it might be valid 
for very bright galaxies.

Furthermore, most creation researchers have focused 
on the possibility of concentric shells of high galaxy density 
roughly centered on our own Milky Way galaxy, but it is also 
conceivable that more complicated, angular-dependent pat-
terns might exist. These might also be indicative of design and 
suggestive that we occupy a special place in the cosmos.
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This issue of the 

Quarterly is a “must-

read” for anyone interested 

in the topic of soft tissue. 

Copies can still be obtained from 

the CRS Bookstore ($5 for members and 

$12 for nonmembers). Call us at 877-CRS-Book.

The spring 2015 issue of the Creation Research Society 

Quarterly features a special report of the iDINO project. 

Included in this report is a historical perspective of 

soft-tissue discoveries, an examination of the tissue 

found in a Triceratops horn, and a rebuttal of claims 

that the tissue is merely microbial contamination. 

In addition, the special report provides a detailed 

critique of the models offered by evolutionists to 

explain how this tissue has survived for millions 

of years. Also, provided is a discussion of how the 

Genesis Flood could account for the distribution of 

dinosaur fossils in North America, and an analysis 

of the significance of Carbon-14 still present in 

dinosaur fossils.
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