
Volume 52, Spring 2016	 275

Introduction
Biological research and interpretation
have been dominated by philosophical
naturalism for almost two centuries, es-
pecially when considering the question
of origins. Deliberate design is often
rejected as unscientific, which leads to

even absurd proposals being entertained
since “something must have happened.”
This is remarkable, since we interact
daily with a world affected by conscious
decision making. If we found a com-
puterlike object on Mars, most would
not insist on finding an explanation

limited to deep time, random mutations,
natural selection, chemistry, and physics.
Although it would be possible to also
explain the actions of a chess-playing
program post-facto by tracing a series of
internal mechanistic steps, this explana-
tion would be incomplete. It would fail
to explain the innate ability to anticipate
and solve novel complex problems.

Prokaryote and eukaryote cells
can do far more than a chess-playing
program, being able to solve an aston-

Creation Research Society Quarterly 2016. 52:275–308.

Cells as Information Processors

Part I: Formal Software Principles

Royal Truman*

Abstract

Cells perform millions of Boolean logic operations every second
using multiple independent codes with stringent formal rules

instantiated on DNA, RNA, proteins, sugars, and membranes. These
codes rely on elementary and concatenated symbols to define variables
and values that can be written, deleted, and read from long- and short-
term memory. Computer and cellular variables are used with control
structures such as “GoTo,” subroutine calls, “wait,” and to initiate
and terminate iteration loops. They have well-defined data types and
allowed operations. Values can be structured in arrays and linked lists.
	 Although variables are identifiable in cells, logic is executed with-
out a readable source code, using hardwired biochemical components
and inherited molecular machines (MMs). Each code requires unique
decoding MMs, and cellular codes interoperate to incorporate details
located throughout the cell to permit holistic correct decisions. Tight
integration between these codes is implemented using adaptor bio-
molecules. DNA, RNA, and proteins are used to define both variables
and values for independent codes, often in overlapping regions. These
biomolecules are also needed to create MMs, adaptors, and the rest of
the infrastructure.

*	 Dr. Royal Truman, Mannheim, Germany, royaltruman@yahoo.com
Accepted for publication April 22, 2016

276	 Creation Research Society Quarterly

ishing variety of unrelated problems
concurrently. A seemingly endless
list of contingencies has been antici-
pated, even when the exact details were
never encountered before by the cell
or its ancestors. Flexible categories of
problems have been foreseen. Cells
perform logic processing in a manner
surprisingly similar to computers, using
codes, structured datatypes, variables,
algorithmic constructs such as Boolean
logic and iteration, and a hierarchy of
sophisticated data storage strategies for
short- and long-term memory. Ignor-
ing this integrated, holistic aspect of
cells and insisting on a reductionist
neo-Darwinian explanation for every
cellular feature prevents answering the
relevant questions correctly: Where did
they come from, and why are they there?

Interpreting Biological
Change and Development

Many complex processes exhibited by
living systems suggest an intention or
purpose. Examples include migration of
birds to specific locations during certain
time periods, development of adults
from a fertilized cell, metamorphosis of
caterpillars into butterflies, and execu-
tion of a strategy based on mental pro-
cesses. This led philosophers long ago to
embed purpose in physical objects as a
form of internal will. Aristotle identified
four kinds of causes for movement and
change in general—the material, for-
mal, efficient, and final—and claimed
in Book II of Physics that a stone falls
because it has an internal nature that
drives it to attain its natural state. Many
prominent thinkers since then have tried
to interpret the specialness of living sys-
tems using notions such as a “formative
drive,” “living principle,” “life-energy,”

“entelechy,” and “teleology.”
Currently, however, science has

become dominated by reductionist and
mechanistic thinking typified by books
such as Jacques Loeb’s The Mechanistic
Conception of Life published in 1912

and the works of behaviorist psycholo-
gists—in particular B. F. Skinner—who
deny the existence of will and mental
states that perceive and direct behavior.
This misguided naturalist thinking
distorts much of what we observe and
experience. Purpose and guidance are
apparent and need to be taken into
account. The existence and operation
of an orchestra, growth of trees, poker-
playing programs, and so on cannot be
adequately explained by extrapolation
from the natural behavior of many
atoms. Wilhelm Dilthey (1833–1911),
prominent philosophy professor at the
University of Berlin, had a special in-
terested in scientific methodology and
introduced a distinction between the
humanities (Geisteswissenschaften) and
natural sciences (Naturwissenschaften).
He argued correctly that investigative
methods are often being applied in areas
they are unsuitable for.

Purpose and guidance in nature
need to be revisited. In this two-part
series, we will examine how intent is
governed in cellular processes, using
digital computers as a model. We will
show formal software principles are in-
volved, which are processed by hardware
molecular machines (Scruton, 1996, p.
254). University of Chicago microbiol-
ogy professor James Shapiro referred to
such stored instructions in a recent lec-
ture, pointing out, “Cells use cognitive
processes (=action based on knowledge)
in dealing with genomic information”
(Shapiro, 2011). At the conclusion of
this analysis, we are reminded of Aris-
totle’s claim that we cannot understand
any cause for change until we can
deduce its purpose (Stangroom and
Garvey, 2005, p. 17).

Examples of Complex
Programs in Cells

Prokaryote and eukaryote cells contain
hundreds of integrated and carefully
regulated programs such as metabolic
networks and signal cascades linking

the environment with gene regulation.
Complex multicellular organisms dis-
play gene regulatory networks to unfold
developmental programs and generate
nervous systems and brain microcir-
cuitries (Markram et al., 2015). We will
examine these and other examples be-
low and in the next paper. In all cases
well-defined, logic-processing steps are
involved, which channel the outcomes.

Coded Information Systems
In a series of papers, Truman introduced
the theory of coded information systems
(CISs), a framework to interpret how
information-driven systems work. A CIS
consists of linked tools or machines that
refine outcomes to attain a specific goal
(Truman, 2012a, 2012b, 2012c, 2013,
2015) (Figure 1). A coded message must
play a prominent role between at least
two members of these linked processes
to demarcate from simple machines.
Messages satisfy rules and strict for-
malisms to be interpreted reliably and
provide flexibility and multipurposes
(Hofstadter, 1980, p. 26).

Intended outcomes are ensured
in a CIS through refinements using a
combination of four possible “refine-
ment factors”: coded messages, sensors,
physical hardware, and preexisting re-
sources such as data or logic-processing
algorithms. The model is quantitative,
measuring the decreased entropy with
respect to a reference state between each
refinement step.

Often the CIS first increases the
range of possible outcomes before
applying constraining processes. To
illustrate, the coding portion of a par-
ticular gene specifies a subset of useful
protein sequences. How has entropy
been decreased? The reference entropy
to compare against is the variety of poly-
peptides that could be generated thanks
to the cellular environment (without
DNA, RNA polymerase, ribosome, ATP,
tRNAs, and other resources, these long
linear chains do not form naturally). The

Volume 52, Spring 2016	 277

reduction in the entropy of the reference
sequences versus the sequences coded
by a gene for a specific purpose defines
the information gain.

CIS are often embedded hierarchi-
cally. The FO region of ATP synthase
is a component of the ATP synthase
molecular machine, which is embedded
in a mitochondrion, which is part of a
cell, which is part of an organ, which
itself is part of an integrated organism
that contributes to an ecological CIS.
Coded messages communicate inten-
tion between members of the system. In
eukaryotes, many subsystems comprise
an individual organism, whereas in
prokaryotes there is more distribution
of effort between collaborating species
in an ecology with exchange of signals
and genetic materials via passive uptake
of DNA (Claverys et al., 2006), conjugal
transfer, viral transduction, and other
lateral gene transfer mechanisms (Stan-
ton, 2007).

Indications Cells
Could Be Computerlike

Modern computer architectures (Von
Neumann architecture, n.d.) remind us
of cells. DNA provides long-term storage,
and the data are not randomly thrown
together but sensibly structured, even as
computers use file systems to organize
related data. Genes in prokaryotes that
need to be co-expressed are often located
together and controlled by an operon
(Osbourn and Field, 2009). In a recent
study, for every eukaryote analyzed, gene
order was not statistically random, but
often those having similar and/or coor-
dinated expression are clustered (Hurst
et al., 2004; Michalak, 2008; Chu et al.,
2011). Just as data on computer hard
disks are stored in sectors, Alu-sequence
containing nucleosomes define regions
of the DNA (Salih et al., 2008; Trifonov,
2011).

DNA is a read/write/delete system.
Data can be reorganized by transposons

and content added via CRISPR (Clus-
tered Regularly Interspaced Short Pal-
indromic Repeats) (Zetsche et al., 2015;
Ran et al., 2015), lateral gene transfer,
and transfer of plasmids in prokaryotes.
Genomes can also be contracted by
deletions, such as the removal of trans-
posable elements (van de Lagemaat et
al., 2005). Portions of DNA are read
many times and converted to mRNA
copies—short-term memory—where
logic processing is performed. Further-
more, mRNA codons specify amino acid
sequences, so clearly a code exists.

We will focus here in Part 1 on
formal software features like data types,
data structures, codes, and algorithms,
which are useful to solve problems
using abstract methods, independent
of the hardware implementation. The
hardware aspects used by cells will be
examined in Part 2.

Key Principles to
Understand How Cells Work

Before showing that cells use formal soft-
ware constructs, we need to devote some
effort to eliminate a few misunderstand-
ings and introduce some guiding in-
sights: DNA does not provide an explicit
prescriptive source program readable
by humans; multiple codes are in use;
each code requires a distinct alphabet
and hardware decoder; software and
hardware are far more integrated than in
digital computers; and logic processing
is distributed and hierarchical.

DNA Does Not Provide
an Explicit Prescriptive

Source Program
Many still erroneously believe DNA
contains a prescriptive language con-
taining a complete blueprint or “Book of
Life:” that specifies in detail the develop-
ment of an organism. As Woodward and
Gills wrote recently, “This is the shock
of shocks: that the DNA alone does not
play the part of the director” (2012, p.
75). This contrasts with computer pro-

Figure 1. Coded Information Systems sequentially refine behavior through a series
of processes. Each goal-directing refinement step could be influenced through
coded messages, sensors, physical hardware, or preexisting resources such as data
or logic-processing algorithms. At least one process must be guided by coded
instructions to be a CIS.

278	 Creation Research Society Quarterly

grams, whose logic can be understood
from the source code. Consider as an
example (1):

if (A=5 and B=’red’ and
not C=’Deactivate’)
then {‘execute follow-
ing instructions’}	 (1)

A line of readable coding such as (1)
will not be found in DNA or elsewhere
in a cell, but the variables can be iden-
tified, and logic operations are indeed
being performed. Can we discern the
Boolean logic and resulting process-
ing being performed? Yes, empirically.
Consider as an example of the variables
A, B, and C three cis-regulatory elements
(CREs, specific nucleotide patterns on
DNA). Each value is defined by which
transcription factor (TF, a protein) is
attached or “nothing is attached.” The
logic being performed can be deci-
phered by systematically varying the
values (Davidson, 2006) and simulated
with computer programs.

The logic is implicit but very real,
and built into the system as whole, and
for good reasons. Cells have far greater
functionality than computers. They can
replicate autonomously, generate their
own energy, repair themselves, manufac-
ture and recycle the substances needed,
produce their processing hardware,
and interact dynamically to provide
emergent behaviors, even committing
suicide (apoptosis) when necessary
for the common good. An inheritable,
error-free source code program to cover
all these details and eventualities would
not be feasible. Instead, cells replicate
only the variables and their values, plus
a functional copy of the necessary hard-
ware each generation.

This strategy provides less opportu-
nity for information corruption com-
pared to specifying all the steps in precise
detail in order to assemble thousands
of cellular components, test the timing
of location and progress of activity, and
then mandate corrective action to take.
We complete the explanation in Part

2 by showing how judicious organiza-
tion—and inheritance—of the hardware
components provide informative con-
tributions and thereby reduce what the
software needs to communicate.

Francis Crick was wrong when he
claimed the genome was the (sole)
source of phenotypic information
(Crick, 1970). We can show this in
many ways. A consequence of RNA
editing, trans-splicing, and other post-
transcriptional RNA modifications
is that the modified sequences can
undergo reverse-transcription and be
introduced into the DNA germ line
(Moller-Krull et al., 2008). Furthermore,
changes in chromatin (which do not
alter DNA sequences) can be inherited
later over multiple generations (Jaenisch
and Bird, 2003). In fact, somatically
heritable chromatin structures are one
way to establish differentiated cell lines
(Gurdon et al., 2003). Further evidence
that DNA does not directly prescribe
final outcomes includes the existence of
multiple life stages such as invertebrates
having distinct larval and adult stages
and other examples of metamorphosis.
In the next paper, which accompanies
this one, we describe the cell as an in-
teracting set of controlling subsystems,
each with its own coded variables, and
less as a hierarchical or cascading design.

Much of what is necessary in the cell
is not directly guided by DNA (Barbieri,
2003, p. 31). Globular proteins work
only after they fold properly, which is
affected by factors such as fluidity of the
environment, how fast different sections
are translated in a ribosome (Spencer
et al., 2012), and the contribution of
chaperones. Even after proteins form,
additional guidance is provided, not
by DNA, but by ligands, which are ju-
diciously attached and removed. Gene
regulatory networks develop automati-
cally upon activating/deactivating CREs
that are passively poised in anticipation.
If one or more TFs activate a particular
CRE, the resulting protein (a new TF)
can activate or deactivate the same or

different CRE(s), eventually leading
automatically to mutually interacting
circuits with no a priori guidance from
explicit coded instructions.

RNAs can also behave as informa-
tive riboswitches. A small molecule
binds to part of the RNA (the aptamer),
which causes an allosteric change in
another portion of the RNA called the
expression platform, which can regulate
gene expression (Serganov and Patel,
2007). There are many more examples
of information processing that do not
involve exclusive and direct guidance
by DNA, such as aggregation of surface
receptors in response to ligands (Wulfing
et al., 2002; Bray and Duke, 2004; Murai
and Pasquale, 2004) and cytoskeletal
reorganization (Pollard and Borisy, 2003;
Pelkmans, 2005).

There are cases, or course, where
outcomes are partially specified directly
by DNA, such as the N-end rule, where-
by the half-life of proteins is determined
to a large extent by the identity of its
N-terminal residue. Sometimes DNA
provides parameters less obviously such
as in protein and vesicle targeting to
distinct cellular locations (Bonifacino
and Glick, 2004; Pool, 2005) and pro-
tein export from cells (Neel et al., 2005;
Stuart and Ezekowitz, 2005). Here the
signal sequences are extremely variable,
both in length and amino acid composi-
tion, and the parameters are generated
sometimes by remote parts of proteins
brought together only after folding. This
variability could be necessary for various
processing details including additional
post-targeting functions (Hegde and
Bernstein, 2006; Emanuelsson, 2002;
http://psort.hgc.jp/).

Evolutionists have generally argued
that mutations are all that is needed to
explain current cells. Distinguished
Oxford professor Denis Noble, a force-
ful critic of Dawkins’ reductionist views,
pointed out that this is too simplistic:

“Neo-Darwinism also privileges ‘genes’
in causation, whereas in multi-way
networks of interactions there can be

Volume 52, Spring 2016	 279

no privileged cause” (Noble, 2015 p. 1).
Does DNA determine outcomes by

already possessing the necessary instruc-
tions, or does it respond to signals from
the cell (e.g., to replace proteins decided
by the cell are needed)? We agree with
Noble, who also wrote, “The causality
is circular, acting both ways: passive
causality by DNA sequences acting as
otherwise inert templates, and active
causality by the functional networks of
interactions that determine how the ge-
nome is activated” (2015, p. 9) and that

“IF-THEN-ELSE” type instructions are
found in cells (p. 10).

An interesting consideration is where
most of the decision making occurs in
computers and cells (Figure 2). This
issue arises in all sender-receiver forms
of communication. In some cases, a
message could provide very detailed
instructions, and in other cases the mes-
sage is (explicitly) minimally informative.
When only variable values are commu-
nicated, sometimes the sender performs
considerable logical preprocessing and
then only provides what is relevant
(which the receiver can easily process).
In other cases, raw data are made avail-
able, and the receiver is responsible to
make sense out of it.

In the first example, we will consider,
the sender has performed most the im-
portant logic processing before sending
the following coded data (2):

(Co=’IBM’; Nr_stocks_
to_buy=510; When_to_
buy=’16 o’clock CET’)	
	 (2)

The receiver now knows what to do
(which stocks to buy, how many, and
when). Considerable decision making
occurs in cells in the sender environ-
ment before the concentration and
location of TFs are specified, and the
results are communicated and processed
as variable values by the relevant CREs
variables at the receiving side.

In the next example, the receiver
must perform much deductive process-
ing, since variable values are commu-
nicated whose significance need to be
interpreted and evaluated (3):

(Co=’IBM’; Stock_
change_in_price=0.1;
Weather=’cloudy’;
Winner=’Manchester
United’)	 (3)

The receiver must now determine
what is relevant and how it correlates
with the decisions to be made. Human
minds typically process raw data consid-
erably before making a decision.

What Is a Code?
What is a code, and how does it relates
to logic processing using variables? A
code defines rules that translate physical
or mental details—such as sounds, im-

ages, pressure, size, quantity, intention,
or even a different code—between two
independent systems using an agreed-
upon abstract convention of symbols.
Speaking and writing are examples,
bridging gaps in location and time. A
simple causal outcome based on only a
mechanical effect does not use a code,
so an axe blow does not split a log in two
thanks to a code that communicates in-
tention. Whether to swing an axe could
be communicated, however, using an
arbitrary symbol convention such as
{thumbs up /thumbs down}, {0 / 1} or
{oui / non}.

The sender and receiver can share
the same symbol set (alphabet), like the
International Flag Code for merchant
ships and the use of ‘Co’ in (2) and (3)
above. An example in cells is when a
specific TF (sender value) interacts di-
rectly with a CRE (generating a receiver
value). Another example is when a DNA
template is used to generate DNA copies.
The next nucleotide value to add to the
growing chain is communicated directly.

Alternatively, the sender and receiver
could use different alphabets and vari-
ables as long as there is an unambiguous
way to map the symbol sets. In (2) above,
the receiver could assign the value for

“Co” to its own variable “Company” and
also convert the time 16 o’clock accord-
ing to its own time zone. This kind of
linkage may require adaptor molecules

Figure 2. Logic processing can occur by the sender before communicating coded data and after the receiver knows what
should be done. Sometimes little or no reasoning is needed to generate the sender’s data, such as photons landing on retinas,
and thereafter complex logic must be executed by the receiver to extract benefit from the data and decide what is to be done.

280	 Creation Research Society Quarterly

(Figure 3) or messenger molecules in
cells.

If an informative ligand attaches to
a TF, which then links to a CRE, this
TF is now playing the role of an adaptor
molecule. Another example of adaptor
molecules are tRNAs in the genetic
code, where one end identifies a specific
mRNA codon (the value), and the other
end translates to a corresponding receiv-
er value (which activated amino acid to
add to the growing protein). Linking the
two systems through a chained network
of signals permits additional factors to
be taken into account that could refine
the details during transfer.

Additional variables can be used
within the sender and the receiver side

to perform necessary reasoning. These
can be independent codes, but at their
interface there must always be pre-
agreed conventions with respect to the
meaning of the variables and how values
are communicated. A receiver could
then process the values assigned to its
internal variables and then become a
new sender, transmitting values to a new
receiver. A chain of sender/receivers can
result, and examples in cells include
signal cascades.

Multiple Codes
Are Used in Cells

Gordon Tomkins may have been the
first scientist to propose that the genetic
code is not the only code used in biology

(Tomkins, 1975). Cell needs are com-
municated by different codes found on
DNA, RNA, proteins, filaments, sugars,
cell membranes, and other cellular
components. Occasionally the literature
seems to incorrectly claim a code is
involved, such as the so-called protein
folding code (Dill et al., 2008), in which
multiple local activities occur in a pre-
cise order as part of the folding process.
The difficulty in this case is identifying
abstract variables upon which Boolean
logic is performed. In this example,
it seems that only physical chemical
forces are occurring in a continuous and
time-ordered set of steps. No variables
are waiting to be assigned values nor
anticipate activation.

Each code has its’ own language and
symbols. The genetic code to specify
protein sequences is independent of the
DNA-binding protein code to regulate
gene expression (Hughes, 2008; Jolma et
al., 2015) (Figure 4), even though both
use DNA, and DNA codes sometimes
share overlapping DNA nucleotides.

Entire collections of CREs can be
organized into cis-regulatory modules
(CRMs), leading to DNA code variants,
since each CRM uses a separate set of
rules. Figure 5 shows a representative
example, where three exon are regulated
by five such CRMs (Davidson, 2006, p.
49). Depending on time (e.g., develop-
ment stage), input signals, and cell lin-
eage, different modules can be used to
interact with the key “proximal module”
nearest to the transcription apparatus.
This is a clear example of Boolean logic
being applied.

In addition, by using different read-
ing frames, the same code sometimes
provides different messages. This was
examined in mathematical detail for the
genetic code at a recent conference on
biological information (Montañez et al.,
2013, pp. 139–167). In a remarkably can-
did paper, we read that “although dual
coding is nearly impossible by chance,
a number of human transcripts contain
overlapping coding regions” (Chung et

Figure 3. Communication between a sender and receiver system corresponds to
transferring values to receiver variables. The alphabet of the sender (dark symbol
in leftmost column) can differ from that of the receiver (dark symbol in rightmost
column). In cells one or more adaptor molecule (middle column) may be needed
to translate values between sender and receiver variables. The correct adaptor is
identified through physical linkage with the sender variable’s value.

A. 1:1 mapping between sender and receiver variable.
B. 1:n mapping.
C. n:1 mapping.

Volume 52, Spring 2016	 281

al., 2007). These multiple codes prompt-
ed Trifonov to point out, “The times of
surrender to ‘junk’ and ‘selfish DNA’
are over, and ‘non-coding’ becomes a
misnomer” (Trifonov, 2011, p. 2).

We will not attempt an exhaustive
listing of all cellular codes at this time,
and the DECODE program continues
to bring new ones to light, but we will
mention a few to demonstrate that cel-
lular codes define variables and their val-
ues but not procedural code as humanly
readable instructions.

There is a tRNA charging code
without which the genetic code cannot
be implemented (Hou and Schimmel,
1988; Trifonov, 2011).

The histone code (Young, 2001; Jen-
uwein and Allis, 2001; Strahl and Allis,
2000; Cosgrove and Wolberger, 2005)
involves post-translational modifications
such as ubiquitination, phosphorylation,
mono-, di-, tri-methylation, acetyla-
tion, sumoylation, and biotinylation of
various residues on the four histones
proteins (H2A, H2B, H3, and H4) that
form the nucleosome. These tags regu-
late gene expression and other processes.
Specific histone modifications can iden-
tify the need for DNA mismatch repair,
for example H3K36me3 (histone H3,
lycine number 36 receives three methyl
groups) (Schmidt and Jackson, 2013)
and H3K56 acetylation (Kadyrova et
al., 2013). Hypoacetylation of H3K56

by enzymes HDACs 1 and 2 facilitate
recruitment of nonhomologous end-
joining (NHEJ) proteins (Miller et al.,
2010). One should not overlook that

each cell type in eukaryotes uses its own
histone code (Carey, 2012, p. 188).

DNA methylation at the correct
location identifies which sections of

Figure 4. Representative example of cis-regulatory logic, showing the 2300 base-pair region preceding the coding region
of gene endo16 of sea urchin. One or more proteins can bind to each of the cis-regulatory elements (gray boxes). The let-
ters identify regions used for different purposes, such as regulation of key tissues during different phases of development
(Davidson, 2006, p. 49–51).

Figure 5. Multiple cis-regulator modules (CRMs) per gene, each composed of
several CREs, permit independent regulation according to time, input signals
and cell lineage. This typical example shows three exons (gray-checked boxes)
regulated by five CRMs (black boxes). The CRMs are about 400 bp long, and
the gene plus regulatory regions are spread out over about 30 kb of DNA. Alterna-
tive looping brings the relevant regions together (Davidson, 2006, p. 49). A: The
“proximal module” 3 interacts with CRM 5; in B it interacts with CRM 1, and
in C it interacts with CRM 2.

282	 Creation Research Society Quarterly

DNA should be transcriptionally active
euchromatin or inactive heterochroma-
tin (Bird, 2002).

The tubulin code involves various
ligands that are added and removed to
microtubules to affect several cellular
processes (Verhey and Gaertig, 2007;
Janke, 2014).

The splicing code of eukaryote
pre-mRNAs permits different exons to
be combined to produce alternative
proteins (Tejedor and Valcárcel, 2010).

The nucleosome positioning codes,
also called “Chambon rules” (Barash et
al., 2010), are understood well enough
to algorithmically automate their loca-
tion to within one base for biological
DNA sequences (Segal et al., 2006;
Trifonov, 1980; Trifonov, 1981; Gab-
dank et al., 2010). During development
eukaryote genes are activated in a timed
based manner using these codes for each
primary transcript (Segal et al., 2006)
to establish a regulatory circuitry that
controls which genes are activated or
silenced (Yuh et al. 1998).

Interaction between genes has also
revealed the Hox Code. Just a few Hox
or homeotic genes control development
of the body plan along the anterior-
posterior axis. They code for transcrip-
tion factors, which can either activate or
repress large gene networks. The same
transcription factor can repress one
gene and activate a different one, and
TFs are involved at many levels within
developmental processes (Wellik, 2007).
A typical regulatory region in eukaryote
DNA is about 500 nucleotides long, on
which four or five transcription factors
can bind. On average eukaryote genes
seem to have about three such regulatory
regions (Bray, 2009, p. 191).

The N-end code regulates the half-
life of a protein using the identity of its
N-terminal residue, which is determined
from the moment they are produced
(Varshavsky, 2011; Gibbs et al., 2014).

In the sugar code, oligomers of
carbohydrates serve as ligands for the
transfer of information, acting with

lectin protein receptors (Gabius et al.,
2011; Murphy et al. 2013). The large
number of hydroxyl groups available
offers enormous storage capacity, vastly
more than the genetic code could (An-
dré et al., 2015).

The adhesive code (Readies and
Takeichi, 1996; Shapiro and Colman,
1999) uses differences in adhesiveness
between neural cells in the primordial
neuroepithelium to first establish seg-
mentation and then the emergence
of specialized structures such as brain
nuclei, cortical layers, fiber tracts, and
neural circuits using cadherins.

A niche code has been proposed
(Forsberg and Smith-Berdan, 2009).
Hematopoietic stem cells (HSCs) must
generate daughter HSCs and a variety
of mature cells in response to stress in a
regulated manner. HSCs are found in
specialized niches in bone marrow, and
there is a regulated adhesive interaction
between niche cells and HSC compo-
nents such as integrin, another example
of adaptor molecules.

Signal Transduction Codes are
used when extracellular signals (“first
messengers” such as hormones, neu-
rotransmitters, and paracrine/autocrine
agents) attach to a specific receptor on
the cell membrane, activating a smaller
number of second messengers such as
calcium, cAMP, nitric oxice, and phos-
phorylation cascades (Figure 6). One
signaling molecule can cause many re-
sponses such as the cell’s metabolism or
gene expression, an example of 1:n vari-
able mapping mentioned in Figure 3).

There is a vast research literature
on this topic, and resources on signal
transduction pathways are available
on-line in databases such as “NetPath”
for humans (http://www.netpath.org/).
The latest research is correcting the
view that simple linear cascades are
used. Instead, large networks consisting
of hundreds or thousands of proteins are
involved (Walhout et al., 2013, p. 93).
Note the rich potential to interact with
other networks and codes to dynami-

cally integrate multiple cell inputs and
needs.

The actin cytoskeleton uses adapter
molecules to identify materials that
should interact there, which implies
a cytoskeleton code (Barbieri, 2003;
Barbieri, 2008, chapter 8).

The complex firing of neurons in the
brain uses some kind of neural code or
codes, since meaning is gleaned that
permits the internal and external world
to be understood (Nicolelis and Ribeiro,
2006; Cessac et al., 2010; Jessell, 2000;
Marquardt and Pfaff, 2001; Flames et
al., 2007). In spite of intense interest, it
is far from being understood.

A phosphorylation code in Hedge-
hog signal transduction has also been
identified (Chen and Jiang, 2013; Ficz,
2015; Schübeler, 2015).

The miRNA code can up or down
regulate individual mRNA levels accord-
ing to eukaryote cell type (Carey, 2012,
pp. 191–194).

A CpG epigenetic code in eukary-
otes governs millions of methylations
on DNA. When near the gene start site,
transcription is blocked but in the gene
itself enhances expression (Jones, 2012).
In this read/write/delete system, DNA-
methyltransferases (DNMT) add methyl
groups, and there are many mechanisms
to remove them in a tissue-specific man-
ner. Methylation is most dramatic in
the brain (Keverne et al., 2015). Most
of the methyl groups are removed in
the fertilized egg (zygote) (Lee et al.,
2014), otherwise the next generation
would begin with a specialized and not
pluripotent cell.

The ventral neural tube is an
example of special codes used in cells
that interpret a gradient concentration.
Distinct classes of neurons are produced
in the ventral neural tube according to
local concentration of Sonic Hedgehog
(Shh) (Briscoe et al., 2000).

Many secreted and membrane
proteins contain N-terminal signal se-
quences that communicate their target
locations (Hegde and Bernstein, 2006).

Volume 52, Spring 2016	 283

Codes in Cells Can Overlap
Cellular codes often overlap and there-
fore require degeneracy to not overly
restrict each other. Since codes can be
implemented using biochemicals which
themselves rely on the genetic code,
complex design tradeoffs are neces-
sary. When planned correctly, the best
implementation must be as robust as
possible, taking into account the sever-
ity of possible errors for all the affected
codes (mutations, mistranslation, etc.).

Degeneracy with respect to one
code could be critically important for
a different one. As an example, differ-
ent codons could represent the same
amino acid in the genetic code, but
each codon can specify how rapidly
that position is translated. Figure 7
describes this using a section of Java
programming.

In probably all cases, assuming
complete degeneracy for a code would
be a mistake. Variants of a class of CRE

could all be recognized by the same
TF, but the CRE sequence differences
specify how long and often to remain
attached, in which tissue type, the tim-
ing of activity during a cell cycle, and
for what stages of development.

The use of multiple and overlap-
ping codes saves material and energy
but is too constraining and requires
too much foresight to find applicabil-
ity in general purpose programming
by humans.

Figure 6. Example of a signal cascade pathway, here involved in programmed cell death (apoptosis). (Source of diagram:
Wikimedia Commons, the free media repository, https://commons.wikimedia.org/wiki/File:Signal_transduction_v1.png).
See also Klipp et al., 2009, pp. 135–142.

284	 Creation Research Society Quarterly

Each Code Uses Its Own Processor
It is important to understand the distinc-
tion between variables and the values
they can assume. Cellular variables
possess recognizable steric and elec-
tronic features and wait for activation
by a sender (which provides the values).
For example, transcription in bacteria
through RNA polymerase involves vari-
ables, like the “sigma factor recognizing
promoter” (the -35 and -10 elements
located before the beginning of the
sequence to be transcribed). As possible
values these locations could be unbound
or bound to one of several possible

“sigma factors.” The sigma factor can also
interact with a distinct set of promoters
(Ishihama, 2000).

For each coding system there are
special processors designed to interpret

the relevant values. When TFs bind to
cis-elements to regulate translation, an
appropriate three-dimensional proces-
sor involving many proteins must be
organized which can include direct or
indirect adaptors (Zhou et al., 2015).
The hardware aspect of cellular design
is discussed in Part 2.

Software and Hardware
Tightly Integrated

Unlike a Turing or von Neumann
Machine (Von Neumann architecture,
n.d.), cells must repair themselves,
generate their own energy, adapt to
new challenges, and reproduce autono-
mously with all necessary components
over many generations. The solution is
a complete synergistic interaction be-
tween the software and hardware. The

physical DNA, RNA, and protein-based
components that produce the hardwired
biochemical processes are themselves
constructed and replaced by relying on
data provided through preexisting DNA,
RNA and proteins.

It is often easy to identify the physi-
cal components of cells but overlook
informational aspects. Each 260 million
photoreceptors on a human retina could
be identified, but the semantic content
implied by the photons landing on them
is then funneled on to only 2 million
connected ganglion cells before send-
ing to the correct processing regions of
the central nervous system (Gazzaniga
et al., 2009). Here information is being
interpreted, compressed, and transferred.

As a second example, microtubules
do much more than only maintain a

Figure 7. Java example of codons being used for two unrelated purposes: to determine amino acid sequence and translation
rate at that position of the mRNA.

Volume 52, Spring 2016	 285

cell’s shape. Per microtubule a hundred
thousand or more globular protein units
grow in many directions and degrade
constantly until coming into contact
with a specialized region of a chromo-
some centromere (Sullivan et al., 2001),
or membrane, after a signal arrives
there, at which point a firm attachment
prevents degradation (Kirschner and
Gerhart, 2005, pp. 148–152). These at-
tachment regions are sensors (variables)
that assume a value (i.e., when activated
by the tip of the microtubule), that
recruits proteins to produce a decoding
molecular machine.

Logic Processing Is
Distributed and Hierarchical

Different prokaryote species form eco-
logical systems with necessary genes
distributed among the members (Sonea
and Mathieu, 2001), which is why a
particular function requiring several
genes can be assembled in one member
through horizontal DNA transfer. Plas-
mids in prokaryotes are another example
of distributed information processing.
In eukaryotes, information processing
is also distributed, such as when bac-
teria digest food separately from the
host organisms’ germ line. Different
cell lineages also distribute the effort,
where each cell type has characteristic
ensembles of activated and deactivated
genes. Proteins, polysaccharides, lipids,
and other substances are used to interact
with receptors on cell surfaces and pro-
vide communication signals to convey
metabolic and developmental status
back and forth (Aricescu and Jones,
2007; Takada et al., 2007; Yamada and
Nelson, 2007; Widelitz, 2005). Inter-
cellular communication also occurs by
molecular diffusion through air or water
using gases, amino acids, oligopeptides
and vitamins as signals (Bogdan, 2001;
Chen et al., 2005; Fuqua et al., 2001;
Chambon, 1995; Lazazzera, 2001).

Hierarchical information process-
ing also occurs. As examples, low-level
logic processing occurs when individual

DNA nucleotides define individual RNA
nucleotides, and when codons specify
amino acids. Once a protein has formed,
additional processing occurs to transfer
it to the correct cell location, later to
integrate into molecular machines,
enzymatic networks, and metabolic
networks. Thereafter ever more complex
features can develop, such as entire
eukaryote organelles which themselves
become part of a properly regulated cell,
on up to organs, whose operations must
also be carefully regulated to permit a
viable organism that interacts within
an ecology.

In addition to such hierarchical
integration, we will see in the accompa-
nying paper that many control systems
in cells—each with their own codes—in-
teract mutually within what often seems
to be the same hierarchical level.

Generic Insights from
Computer Systems

Architecture
The explosive development of computer
technologies is the result of collabora-
tion between millions of scientists, en-
gineers, and mathematicians worldwide.
Fundamental to this success are interop-
erability conventions and standards
(such as the Open Systems Interconnec-
tion model). This permits specialists in
various hardware and software areas to
focus on and develop technologies from
which integrated systems result. Using
these design insights, we will interpret
cellular behavior by examining software
and hardware aspects individually and
consider different levels in the system
at which guidance is provided.

Another insight humans have gained
is the design of subsystems that can be
assembled. We discussed lateral and hi-
erarchical logic processing above (Than-
bichler and Shapiro, 2008; Schneider
and Grosschedl, 2007). An external
printer can be built separately and then
linked to the rest of the system. To work
properly the hardware devices often also

require their own dedicated software
(e.g., “drivers” must be installed).

Software Elements Used to
Implement Processing Logic

Before examining software constructs
used by computers and cells, let us con-
sider a simple program to calculate the
factorial of a number (Figure 8).

Several general principles can be
discerned.
1. 	 The programmer did not need to

consider how the solution would
be implemented on hardware nor
the operating system details. Only
the logic needs to be accurately
expressed symbolically.

2. 	 There is a language with a precise
grammar that contains several
generic constructs—for example,
iteration (with a defined starting and
finishing value) and a Boolean test (if
i has a value of n or less, then add 1
and continue, otherwise terminate
the iteration).

3. 	 The same processing logic could
be applied with different values and
meanings for the variable n.

4. 	 The algorithm could be copied into
other programs and modified.

5. 	 The variables belong to a specific
data type and have properties con-
sistent with them. In the example,
i and n must have an integer value:
one cannot assign a value of “Smith”
nor “True” to them.

6. 	 The variables can represent real ob-
jects, like dollar bills, but the choice
of the symbols and what they do are
physically independent of what they
specify.

7. 	 The algorithm continues to make
sense if each variable is replaced
by another unique symbol. Even a
three-dimensional abstract symbol
could be used and the values as-
signed could also be represented by
no code currently in use by comput-
ers. However, changes in hardware
would then become necessary.

286	 Creation Research Society Quarterly

8. 	 To have any value, the outcome from
the algorithm needs to be retained
or have some kind of effect.
All these and other principles can

also be identified in cellular information
processing. In the example in Figure
8, we see how limitless cases could be
solved by merely replacing the numbers
i and n as needed. This works only if
programming constructs such as itera-
tion, assignment of values to variables,
and so on, exist. Otherwise a unique
mechanical arrangement would be
needed to solve each example. It is this
use of general-purpose symbolic logic,
which can be mapped to mental or
physical objects, that is so special about
computers and cells.

After this long, but necessary, prepa-
ration, we are finally ready to examine
three important topics in the art of
designing software: generic software
data structures; generic programming
elements; and file formatting. These are
fundamental for computers.

I. Generic Software Data Structures.
Let us examine how data is usually
structured in modern computers and
cells to facilitate use in general-purpose

programming constructs discussed in
section II.

Symbols in an alphabet
Codes rely on an alphabet of elementary
symbols. Modern digital computers use
an alphabet of two symbols {0, 1} called
bits. Cells use dozens of alphabets for
their many codes. DNA is composed of
four nucleotides abbreviated {A, C, G,
T}, RNA also uses four nucleotides {A,
C, G, U}, other codes rely on small ions
such as cAMP (Ashcroft, 1997; Krysko
et al., 2005) and calcium (Wagner et
al., 2015), or on small parts of larger
molecules.

One or several symbols taken jointly
define an item, field, constant, variable,
or value. In the past, telegraph messages
used 5-letter commercial coded values
such as BYOXO (“Are you trying to wea-
sel out of our deal?”) and LIOUY (“Why
do you not answer my question?”).
Other conventions also exist, such as
LOL (“Laughing Out Loud”) and CU
(“See You”). In the extended ascii ISO
8859–1 code, ‘00001001’ represents a
Line Feed, ‘01000001’ represents the
letter A, and ‘00111000’ represents the
decimal digit 8. The codeword length

of values can be fixed as in the asci
extended and the genetic code or have
different lengths as in compressed codes
to store and transmit electronic data
(Togneri and deSilva, 2003). There
are design trade-offs to consider when
deciding whether to use a fixed or vari-
able length (Truman, 2012).

The symbols used by computer
programs must be exact to be processed.
Confirmation and Conformation are
almost identical, but not the same.

Different codes can be linked us-
ing different alphabets. A sender code
could be restricted to a symbol from, e.g.,
{green, yellow, red}, which the receiver
could translate to its system, e.g., limited
to {1, 2, 3}.

When large molecules are used to
convey coded meaning in cells, typically
a small portion is informative, and the
rest plays an adaptor molecule role or
is used for the implementation details.
Consider proteins. Portions of differ-
ent residues are integrated to define
a joint “symbol” having unique steric
and electronic properties. The result-
ing symbols must be decoded using
three-dimensional processors. In the
fluid environment of cells under vary-
ing temperatures, the decoders must be
more flexible than in computers. One
consequence is that a portion of differ-
ent amino acids could be combined to
produce functionally the same symbol
meaning in three dimensions.

Data types
Modern computer languages enforce
data typing, which defines the kinds of
values that can be assigned to variables to
prevent errors. Common types include
integer, floating-point number, charac-
ter, alphanumeric string, and Boolean.
Each kind of variable for biological
codes is restricted to a range of values.
The genetic code uses DNA and mRNA
codons, whereas the enzyme complexes
used by the histone code do not process
codons (http://www.cellsignal.com/
contents/resources-reference-tables/

Figure 8. Programming using Java to calculate the factorial of a number to il-
lustrate the use of common software constructs to solve problems independent
of the hardware implementation.

Volume 52, Spring 2016	 287

histone-modification-table/science-
tables-histone).

As another example, many mRNAs
can interact with only some miRNAs
(which specify what is to occur to the
mRNA; Verdel et al., 2009; Sugiyama et
al., 2005). This corresponds to 1:n, n:1,
or n:m variable binding in Figure 3. In
addition, only certain noncoding RNA
data types (specific siRNAs, piRNAs, Alu
RNAs etc.) are recognized by mRNA
binding proteins.

Data type subsets
A subset of a data type can also be estab-
lished for a specific program or module
to further narrow acceptable values
in some programming context—for
example, only certain acceptable city
codes for telephone numbers in a city,
or a list of alphanumeric identifiers for a
product line. We find this principle also
in cells. The codons to represent Ala-
nine must come from the subset {GCU,
GCC, GCA, GCG} and Arginine from
{CGU, CGC, CGA, CGG, AGA, AGG}.

Operation are defined
for each data type

Specific computing methods or opera-
tions are permitted for each data type
(and also for complex structures like
matrices, arrays, etc.). One can negate
a Boolean variable to convert True into
False, but negating a data type “charac-
ter” makes no sense. String variables can
be concatenated, for example phrase =

“white” + “ ” + “house” to form “white
house,” but this won’t work for variables
such as integers.

This principle is also found in cells.
Each code used with DNA, RNA, pro-
teins, sugars, or membranes is limited
to its variable type(s) and their allowed
operations. Consider the processing
operations that can be performed with
mRNA’s data type “codon.” The values
can be read at the A (acceptor) or E
(exit) portion of ribosomes (the receiver
variables), they can be “concatenated”
on each side to form polymers, and

they can base pairs in unique ways (A-T
and C-G). These kinds of operations
cannot be assumed for other data types,
such as hormones, transcription factors,
or neurotransmitters. Ribonucleases
and restriction enzymes can cut DNA
strands using a subset of acceptable pat-
terns (the receiver variable), but these
locations are not processed on a codon
basis as the genetic code does.

Group item
Elementary fields or items in computer
languages can store values long-term
using compound symbols. In many
programming languages, several el-
ementary items can also be combined
and processed jointly for read and write
purposes. As an example, a group item

“address” could be composed of elemen-
tary items “house-number,” “street,”

“city,” and “country-code.” Additional
hierarchical clustering is also used in
computer languages (such as C, Pascal,
and Cobol), meaning group items can
be further combined into records for
example. This principle is also found
in data transfer conventions like XML.

In cells, we recognize this principle
whenever elements containing substruc-
tures are processed as a complete entity.
One example is telomeres at the end
of chromosomes, composed of groups
of repetitive nucleotide patterns (e.g.,
TTAGGG in vertebrates), which are
replenished by the enzyme telomerase
reverse transcriptase. The six individual
nucleotides are processed as an en-
semble. In S. cerevisiae, each C1–3A/
TG1–3 repeat, taken jointly, constitute a
potential binding site for Rap1 proteins,
which recruit additional proteins (Wil-
liams et al, 2010).

In mammals, shelterin protein com-
plexes regulate telomerase activity. Two
of the six subunits (TRF1 and TRF1)
bind uniquely to individual double-
stranded TTAGGG (de Lange, 2010).
So once again we recognize the concept
of a grouping of elementary components.
At a higher level, multiple copies of the

individual patterns are treated as a new
grouped entity and added all together to
a chromosome by TERT (TElomerase
Reverse Transcriptases) using a piece of
template RNA known as TERC (Jády et
al, 2006).

Group items consisting of smaller
group items are not limited to repetitive
patterns. Multiple codons are placed
together within exons, which them-
selves are integrated into a primary
RNA transcript. Processing as a whole
occurs, such as in retrotranscription
and rearrangements with the help of
transposable elements.

The concept of group processing
reminds us of how several residues
jointly lead to discrete motifs in folded
proteins and how a larger numbers of
residues work together to form secondary
structures such as alpha helices and beta
sheets. Different nucleotide combina-
tions also produce special RNA motifs.

Microbial genomes are also known
to have an operon-like organization at
various scalar levels (Audit and Ouzonis,
2003).

Concatenated index
In relational databases such as Oracle,
a unique combination of one or more
index values can be used to identify data
records. Similarly, multiple nucleotides
define promotors to identify the location
of genes.

Array
Arrays and linked lists contain a series of
values. In arrays, values of some datatype
are stored in numerically indexed posi-
tions. The position within the array is
informative and can be used directly in
programming logic. If a certain value is
always located at a specific index posi-
tion (or a limited range of positions es-
tablished in advance), it can be accessed
directly by processing logic. An example
using Fortran (a language well-suited to
matrix calculations) is shown below (4).
Assume that the results of a student’s dif-
ferent exams are stored in known index

288	 Creation Research Society Quarterly

positions of array Examresults, and index
position 3 contains the points obtained
for the math test. The programing logic
might look like this:

IF (Examresults(3) .GE.
70 .AND. Examresults(3)
.LT. 85) THEN Mathgrade
= ‘B’	 (4)

Highly relevant to our discussion
about cells, the value of interest could
in principle be stored in different array
positions if the acceptable alternatives
are established in advance. Suppose
there were two examiners and the result
if determined by the first one is stored
in Examresults(20) and if by the second
examiner in Examresults(21). Now the
program must determine the test results
for the math exam by looking up the
contents of array positions 20 and 21 and
select the one having the exam result.

Prokaryote promotors illustrate ar-
ray data storage and processing. For the
Pribnow Box, a six-nucleotide consensus
TATAAT is used by E. coli, centered at
the -10 position, and often a second pat-
tern TTGACA centered at -31 (Figure
9). For some bacteria or genes, the ar-
ray positions to check could be slightly

shifted, but legitimate indexed positions
to be tested are known in advance. We
will not elaborate here on the reasons for
using alternative array positions, but it
could be to regulate transcription rates or
the results of genomic rearrangements.

There are many more examples
of array processing in cells. In a typi-
cal ca. 22-nucleotide miRNA, usually
only 6–8 adjacent or almost adjacent
nucleotides (the seed region) at the 5’
end are relevant, which is also true of
the corresponding receiver variable on
an mRNA. Logical tests on candidate
miRNAs and their binding sites can
therefore be performed using array index
values. As another example, the coding
parts of DNA and mRNA specify amino
acid sequences, and the nucleotides
need to be processed as triplets with no
frameshifts. This permits translation to
read the codons located in sequential
index positions along mRNAs. In other
words, each array index position does not
contain a nucleotide, but a codon. Once
the mature mRNA is ready for transla-
tion the length remains fixed, another
characteristic of arrays.

Additional examples of processing
array data include the symbols used by

mobile elements to recognize insertion
motifs; the portions of folded TFs that
recognize cis-regulatory combinations;
and the portions of enzymes that recog-
nize restriction sites.

We see why many proteins must fold
reliably into the same three-dimensional
structure. This brings the relevant
elementary symbols together so each
can be assigned to a three-dimension
index, “protein_position[i,j,k].” The
relevant array positions refer to location
in three-dimensional space and not the
primary protein sequence. The resulting
symbols need to be defined well enough
to permit variables and their values to
recognize each other, synergistically
molding themselves together and avoid-
ing false positives.

Whenever for a DNA or RNA-based
code the distance between key nucleo-
tide patterns are exactly or almost exactly
known (including epigenetically modi-
fied nucleotides), then an indexed array
seems to be a better description than a
linked list. Knowing index values allows
other array positions to be skipped and
ignored. This is physically implemented
in cells by constraining the decoders
(e.g., portions of proteins) to specific

Figure 9. Nucleotide patterns at specific locations in bacteria define consensus promoter elements. The Pribnow box is
centered at the -10, and a second component is often found at the -35 nucleotide position upstream from the start of tran-
scription. Other regulatory elements are sometimes centered at the -41 or -61 position. If each nucleotide in the regulatory
region is stored in an array, the index position can be used to program logical tests.

Volume 52, Spring 2016	 289

ranges of distance and location between
the relevant data elements. (In the case
of linked lists, however, a more compli-
cated search for the relevant variables
must be implemented).

We suggest below that DNA rep-
lication and transcription processing,
which are used by different codes than
those just discussed, are based not on
arrays but linked lists. There are subtle
differences between these kinds of data
structures. For example, in computers
the length of an array is established
when the array is created (unlike linked
lists, which grow and shrink as needed).
Remarkably, in cells the same nucleo-
tides are sometimes used by different
codes concurrently, each with different
kinds of data structures.

Linked List
A linked list is a chain of data and link
values. The data part contains the useful
information, and the link has the address
of the next or previous element. Single-
linked lists only point to the address of
the next element, whereas double-linked
lists include pointers to the next and the
preceding data location (Figure 10).

 Either an array or linked list could
be used for programming purposes. They

do differ, however, in internal imple-
mentation in ways that affect execution
speed of data insertion, deletion, updat-
ing, and searching. One difference is
that the index value where specific data
is located in array lists is generally not
known in advance and can change. Un-
like arrays, linked lists can automatically
grow and shrink dynamically as needed.

To illustrate the difference, candi-
date CRMs that could interact with the
proximal module to regulate a gene
are separated by distances that can vary
(Figure 5). Finding the activated CRM
requires a search for relevant data sym-
bols whose positions are not defined
by unique index values. An additional
complication is that the regions of the
CRM that are to bind to the proximal
module involve CREs whose positions
are not static in three dimension and
must also be searched for.

The same reasoning applies when
spliceosomes identify variable intron
content whose boundary is defined by
splicing signals (Rino and Carmo-Fon-
seca, 2009). The introns are generally
not identifiable a priori by fixed index
positions and the spliceosome succeeds
even if transcription error adds or elimi-
nates nucleotides.

In linked lists, elements of a defined
data type (which could be a complex
group of different item types) can be
added to the end, inserted at any posi-
tion, modified or removed (for arrays
also, but that requires more processing
effort). In addition, another linked list
can be added on to another at any posi-
tion. One disadvantage, of course, is that
more effort is required to find a specific
value compared to when its indexed
location is known in advance.

In RNA, the four nucleotides {A,
C, G, U} are attached to riboses (and
deoxyriboses for DNA), which are held
together along the backbone by phos-
phate groups (Figure 11).

Analogous to linked lists, nucleotides
can easily be added, removed, or in-
serted simply by breaking and reattach-
ing “address pointers,” here phosphate
bonds. This is an excellent description
of what happens when DNA chains
replicate one base after the other, RNA is
transcribed, introns are removed, exons
are spliced together, and chromosome
crossover occurs. Absolute index values
per se are generally not relevant for the
logic processing, unlike for arrays.

We summarize in Table I some of
the built-in methods available to linked
lists, using the Java language (https://
docs.oracle.com/javase/7/docs/api/java/
util/ArrayList.html) and include some
examples from cells.

In many cases, the processing could
be defined in terms of linked lists and/or
arrays. Let us recall miRNAs and take
into account the concept of sublists, or
relative indices, mentioned in Table I.
In processing step 1, the nucleotides of
a candidate miRNA could be assigned
to a sequential linked list. In processing
step 2, sliding windows 6–10 nucleo-
tides long (representing candidate seed
regions) could be fed into a fixed-length
array. The values in array position[0]

… position[9] would then be system-
atically tested against possible acceptor
variables in mRNAs. Multiple hits are
allowed.

Figure 10. Linked lists and arrays. A. Double linked lists contain data (non-shaded
boxes) and links (gray boxes), which point to the preceding and next member of
the array. B. Arrays contain data at static locations identified by index values.

290	 Creation Research Society Quarterly

Variables as a Data Structure?
We mentioned that in programming,
arrays and linked lists are used to store
data values. These can be assigned to a
variable. For example, for an employee
stored in index position 45 we might
have a line of programming such as:
SalaryInDollars = SalaryInPesos(45) *
1.4, and there is no ambiguity in how
the value assignment occurs, nor in what
was assigned to the variable “SalaryIn-
Dollars.” Sometimes this is also true in
cells. The anticodon of a specific tRNA
is fixed, and the value of the commu-

nicated charged amino acid is exactly
specified. But in cells this is not always
that straightforward. It would be as if
the variable SalaryInDollars could have
small physical differences that affect
how it interacts with the array positions,
leading to significant effects. This issue
can also apply to variable assignments
that do not involve arrays and linked lists.

Unlike computers, cells often use
variants of variables that do not respond
identically to the same values. For ex-
ample, a CRE is like a sensor, a variable
that can be assigned values such as “TFn

bound” or “no TF is bound.” However,
the binding sequence of a particular
CRE can vary and therefore respond dif-
ferently to an identical TF (which itself
can provide many values). This can have
serious consequences, affecting how fast
and long binding occurs, and could even
affect the subsequent Boolean logic. (For
example, a modified CRE might affect
the geometry of the bound TF and thus
how it interacts with other factors.)

This suggests a novel technical
inspiration for computer scientists and
bioinformatic researchers. Instead of

Method Meaning

Add() Appends an element to the end or inserts at a specific position.

Cells: RNA transcription; some forms of RNA editing can insert codons (Bass, 2002; Nishikura, 2010); removing introns
and splicing exons together; replicating DNA; chromosome cross-over.

Clear() Removes all of the elements from a list.

Cells: Upon degrading RNA all resources are free to be used for other purposes, unlike for arrays which when empty still
consumes computer memory.

Contains()
Get()
IndexOf()

Returns true if this list contains the specified element.
Returns the element at the specified position in this list.
Returns the index of the first occurrence of the specified element.

To identify introns, a primary transcript is searched to identify where it starts and ends to identify the index values. Intron
lengths can vary considerably. Automated algorithms, such as SplicePort (http://spliceport.cbcb.umd.edu/) and Gene-
Splice (http://ccb.jhu.edu/software/genesplicer/) reflect the logic used in eukaryote cells to identify splice sites.

The same concept is found in DNA in which transposable elements can be removed from genomes using patterns that
define where they begin and end (van de Lagemaat, 2005).

Other examples include: the initiation codon on mRNA is searched for (and modified) and so is the region on mRNA at
which to create polyadenylation tails; patterns on mRNA are also searched for where nucleotide posttranscription modi-
fications are to occur. The CRMs (Figure 5) are of variable distance from each other (e.g., after insertion of transposable
elements into DNA) and need to be found. The location of elementary symbols for activated CRMs can also be variable,
depending on what TFs are bound and which ligands these TFs contain.

Table I. Some in-built methods used with linked lists in object oriented programming languages like Java and examples
from cell biology.

Volume 52, Spring 2016	 291

treating members of a class of CREs
as functionally identical or as separate
variables—as we have been implying so
far—the suggestion here is to develop
a fuzzy-logic type technology which
permits both variables and values to
be processed with variability. Finding
cellular variables would then also
use linked arrays, since the candidate
regions and length would be unknown
in advance. The imprecision of many
bioinformatic software tools to identify
regulatory patterns reflects these joint
uncertainties.

Here is an example. RNA polymerase
and TFs search for DNA (response ele-
ments, or sensors) in 100–1000 base-pair
regions upstream from the transcrip-
tion start site and on the same strand.
Nucleotide positions are indexed with
negative numbers counting back from
-1 towards the 5’ direction. The patterns
to test are variables that are not always
the same in location or details, which
is where linked lists become useful. In
focused initiation, transcription starts at
a single nucleotide or within a narrow
region of several nucleotides having

sequence motifs such as the TATA box
and DPE. In dispersed initiation, there
are multiple weak start sites over a broad
region of about 50 to 100 nucleotides
(Juven-Gershon and Kadonaga, 2010).

This suggestion captures those cases
where symbols seem to have both variable
and value character. The regulatory por-
tion of genes define variables that need
data to know when and where to initiate
transcription, but simultaneously RNA
polymerase and TFs sometimes also
provide variables that need data to know
where to attach in the promoter region.

Method Meaning

RemoveAll() Removes from the list all occurrences of specific values.

Cells: Examples include tRNA splicing (Trotta et al., 1997) and RNA self-splicing (Cech, 2002) based on secondary or
tertiary structure. These rely on discrete structures which can be stored as structured (i.e., multisymbol) values in individ-
ual linked list positions, which is a different operation than removing whatever is found between two boundary patterns.
This assumes a specific code is to work with the linked list.

Note: Gene silencing mechanisms are not the same as physical compacting through physical removal.

RemoveRange() Removes the elements whose index is between two specified indices.

Cells: After the index location of intron/exon boundaries are found, the introns can be removed from primary transcripts.

Set() Replaces the element at positions that need to be specified with a value.

Cells: Error correction mechanisms use a DNA or RNA template; any process which modifies a DNA nucleotide (like
methylation) or RNA codon, including RNA editing (Bass, 2002; Nishikura, 2010).

SubList() Sublist data structures are a feature of linked lists and arrays. Logic processing is
performed with respect to the sublist and its own indices, for which the first one
is assigned an index value 0, the second 1, etc. All operations performed on the
sublist are reflected in the original full list.

Cells: The seed region within miRNAs. In addition, many of the examples above rely on first identifying the location of
boundaries; what is relevant thereafter are the relative positions.

Table I (continued)

292	 Creation Research Society Quarterly

II. Generic Programming Elements
Modern computer languages use some
standard constructs to express what is
to be done. Often the same logic can
be reused, and new values only need to
be assigned to the variables. We will dis-
cuss the main ones used to implement
processing in computer and cellular
programming.

Assign Values to Variables
Kirschner and Gerhart noted that in-
formation is used by cells to respond
to changing circumstances. They wrote,

“Two extreme views of information
transfer have always existed in biology,
the permissive and the instructive. The
distinction comes up whenever there is
a stimulus and response, or more gener-

ally a cause and an effect … Watering
a seed provides a stimulus, but it is a
permissive input, since no one would
assume that the water falling on the
seed instructs the seed how to germi-
nate into a plant” (2005, p. 125). We
believe their intuition refers to values
(provided by the stimulus) and variables
(which generate a response upon pro-
cessing with the assigned value). The
cascade of steps to be executed—after,
for example, sensing moisture—must
already have been prepared and an-
ticipated at the receiving end. The
variables patiently wait until activated
by informative signals.

Programs and subroutines use vari-
ables restricted, as we mentioned, to a
relevant data type, to which different

values can be assigned every time the
program is executed. To illustrate, price,
discnt, p, d, and newpri are variables in
this Fortran-like programming code.

price = 100	 (5)
discnt = 5
call calc1(price, dis-
cnt)
subroutine calc1(p, d)
newpri = p - d

Values have been assigned or are cal-
culated. Here price and p have the same
meaning, and two coding conventions
are linked by associating a variable from
the calling program to one used within
the receiving subroutine calc1.

How do variables relate to the dis-
cussion on symbols, data types, subsets,
and operations above? In computer pro-
grams, variable names and their values
are constructed from one or more fun-
damental symbols. The variable price is
defined by combining several symbols
from the relevant ASCII alphabet and
is treated as a unique entity. The symbol
combination ecirp, however, has not
been assigned a meaning in (5) and is
not a valid variable in this program. The
value 100 assigned to price is also com-
prised of several ASCII symbols, which
taken together have a unique meaning,
but assigning price = e34/$![makes no
sense, being outside the relevant data
type. An operation newpri = TRUE / 45
is also not legitimate, not being a valid
operation of that datatype.

Through such precise software
conventions, programming errors can
be avoided and action to perform ex-
pressed unambiguously. However, if
the semantic meaning of the variables is
not known, the ultimate intention and
results might never be fully understood.
What if the source code is not available
at all but only the executable program?
By empirically testing variable values,
the hidden Boolean logic can still be
discerned in principle by the results, an
important observation when reflecting
on cells.

Figure 11. Structure of RNA. The four nucleotides are defined by whether the
base A, C, G or U is attached where the R group is shown.

Volume 52, Spring 2016	 293

How does all this work with cells?
To understand cellular logic, one must
identify four players: the sending coding
system; the receiving coding system;
and, for both, what the variables are
and what provides their values. What
is a variable? It is the biological recep-
tor or sensor able to assume alternative
values (including a simple “bound”/“not
bound” state), which, once activated
with a value, leads to a relevant biologi-
cal response.

Variables are composed of a single
symbol or of elementary symbols com-
bined in a unique manner (in computers
and cells). Defining variables is neces-
sary to program intention, and cellular
variables are identifiable by humans and
cellular decoders.

The A site of a ribosome is a receiver
variable (Figure 2), able to accept as val-
ues any of the 64 codons or to be empty.
To work properly at the ribosome, not
any codon will do. It must only accept
the value transferred by a specific sender
variable, which is associated with the
relevant mRNA.

As another example, the location
on a template DNA being currently
processed by a DNA or RNA polymerase
is a sender variable whose current value
is one of the four nucleotides to be com-
municated to a polymerase decoder.
At the end of the growing chain, part
of the polymerase defines a receiver
variable, which needs to know which
nucleotide is to be added (the receiver
value) (Figure 3).

The general pattern should now
be clear. Special locations on sugars,
membranes, or proteins are variables
that can accept values (ligands or noth-
ing bound), for example, in the histone
code. The enzymes that methylate the
appropriate histone residue can have
many variables of their own—used to
first perform their own internal logic—
and then a sender variable is assigned a
sending value, the ligand it will transfer.
Recall that a chain of sender/receivers
can be set up.

The discussion above may have
suggested that only a few elementary
symbols are used along with a handful
of values for variables. Unlike comput-
ers, which use only elementary 0/1 “bits”
grouped into a relatively modest number
of unique ASCII symbols, in cells vari-
ables and their values rely on different
and more complex alphabets for dif-
ferent codes, using many elementary
symbols having distinct geometric and
electronic properties.

With computers, hardware design
is simpler and more reliable if the va-
riety of elementary symbols (bits) and
grouped symbols like ASCII letters are
restricted. Many of the cellular codes,
however, must support a far more nu-
anced behavior (recall our comments on
fuzzy variables and fuzzy values). A very
large number of elementary symbols are
used, each having three-dimensional
electronic and geometric features (as
when portions of amino acids within pro-
teins are combined in TFs). This permits
rheostat-like or fuzzy-logic outcomes,
which can be fine-tuned dynamically.

To illustrate, not only can different
combinations of amino acids define the
same kind of TF, but nearby attachments
and physical conditions like temperature
and salinity can affect the quantitative
value that gets interpreted once bound to
a CRE. Fine differences in the topology
of the same kind of CRE—even those
having identical nucleotides—can also
lead to quantitative differences upon
interacting with a seemingly identical
TF. This is important to understand how
codes can interact synergistically. They
can modify the physical geometry of the
compound symbols used by other codes.

Assign a Value to a Constant
Values of variables could change very
often during execution of a program,
such as the next nucleotide value to be
processed by a polymerase. Programs
also benefit from using constants, which
during a relevant time period should not
change. Implicit in cellular logic pro-

cessing are many constants, such as the
temperature, amount of energy provided
by an ATP molecule, which ensemble
of genes are up- and down-regulated for
a cell type, and genomic imprinting (in
which certain genes are expressed in a
parent-of-origin-specific manner).

Boolean Logic
The ability to use If-THEN-ELSE type
logic adds immense value to program-
ming, and to understand cellular logic,
one must identity what is the variable
being tested and what provides its values.
Between 5% and 10% of protein-coding
genes in most organisms encode a TF
(values for CREs), and these can have
multiple binding domains. Only three
kinds of domain are known: cold shock,
helix-turn-helix (HTH) type 3, and HTH
psq (Walhout et al., 2013, p. 67). Interac-
tion of only portions of a domain with a
CRE or other biochemicals define the
values (Figure 12).

Example (6) illustrates in program-
ming terms the kinds of logic performed.

if (CRE_1 = ‘val_1’)
{do this}	 (6)
else if (CRE_1 =
‘val_2’) {do something
else}
else if (CRE_1 =
‘val_3’) {do the follow-
ing}
else {do nothing, or
continue what you are
doing… whatever makes
sense}

Checkpoint if-then logic occurs
throughout every step of the cell cycle
(Shapiro, 2014) checking for genome
damage (Ishikawa et al., 2006), nutri-
tional status (Searle et al., 2011), progress
of replication (Segurado and Tercero,
2009), DNA replication (Putnam et al.,
2009; Nguyen et al., 2010), DNA damage
(Huen and Chen, 2010), chromosome
alignment on the spindle pole (Nezi and
Musacchio, 2009; Musacchio, 2011),
spindle orientation (Caydasi et al., 2010),
telomere capping (Ciapponi and Cenci,

294	 Creation Research Society Quarterly

2008), cell size (Fang et al., 2006), and
whether the cell has accumulated the
necessary components needed by the
daughter cells (Sabelli et al., 2013).

Errors would lead to serious conse-
quences. Instead of genome repair in
response to DNA damage, the if-then
logic could lead to programmed cell
death (apoptosis) (Tentner et al., 2012;
Walsh and Edinger, 2010; Engelberg-
Kulka et al., 2009), using some intercell
molecules as “death factors” (Holoch
and Griffith, 2009) or to a decision to
halt the cycle and initiate very sophisti-
cated repairs (Song, 2007).

Iteration
Iteration loops are often used in pro-
gramming to ensure the correct number

of repetitions. An “infinite loop” would
consume a computer’s—and cell’s—re-
sources and must be prevented (Figure
13).

Various repetitive processes occur
in cells under the careful regulation of
Boolean decisions: many RNA copies
are produced from a single gene; many
protein copies are made from a single
mRNA; many copies of key biochemi-
cals are synthesized, such as amino acids,
tRNAs, hormones, ATP, antibodies, etc.;
each codon position on mRNAs must be
processed; flagella must rotate enough
times but not continually; tubulin copies
are polymerized to form long microtu-
bules; enough recursive interactions
having the right parameters must be run
to produce steady-state genetic regula-

tory circuits; and many copies of each
cell type are produced in eukaryotes.

There are many more examples,
recognized whenever a cyclic behavior
is observed having feedback control.
Examination of molecular machines
reveals that this is a general principle.
Controlling iteration, defining the con-
ditions to use, when to start, and when
to terminate, must be implemented si-
multaneous with the iterating processes.
Runaway production would be deadly.
Remarkably, this applies not only to the
operation of molecular machines but
also to the process to create the right
number of them also, according to cur-
rent cellular need. Structuring data into
datatypes like arrays and link facilitates
the use of iterations in programming.

Control Structures
Programs use techniques to control
what is to be done, when, where, how,
and how often. In cells, we find many
examples. We discussed iteration already.
Boolean logic is used with the binding
state of cis-regulatory elements (CRE)
such as enhancers, silencers, and insula-
tors (Kolovos et al., 2012; Capelson and
Corces, 2004) to regulate genes precisely,
in a manner unique to each cell lineage
(Davidson, 2006). The logic is often
very complex. Suites of cis-regulatory
modules (CRMs) (Figure 5) can regu-
late multiple genetic loci distributed
throughout the genome, establishing
network circuits sometimes called

“regulons” or “cis-regulatory networks”
(Dufour et al., 2010).

The combinatorial potential through
binding various TFs permits a vast range
of regulatory possibilities, able to engage
in sophisticated molecular computa-
tions (Shapiro and Sternberg, 2005;
Davidson and Erwin, 2006). Because
the underlying physical interactions
are weak, the components can form
and dissociate rapidly to permit quick
responses to signals received. Complex
computations using weak interactions
to form novel circuits is also typical of

Figure 12. Transcription factors possess DNA-binding domains (solid black),
only portions of which provide the values for receiver variables (the appropriate
cis-regulatory elements).

Volume 52, Spring 2016	 295

how neurons are wired (London and
Hausser, 2005; Sidiropoulou et al., 2006;
Markram et al., 2015).

Computer programmers can use
“GoTo” type commands. Special signals
are ubiquitous in cells, which specify
where molecular machines and com-
ponents are to act, i.e., which organelle,
subcompartment, or location on a
membrane. Causing instructions that
are stored elsewhere to be executed
goes by names such as functions, meth-
ods, procedures, and subroutines in
computer programming. In cells, there
are many examples, such as activating
hox genes to regulate expression of
many genes as a modular ensemble and
activating key TFs to generate genetic
regulatory genetic circuits (Davidson,
2006). Remote processing is often en-
capsulated in various subcompartments
and organelles. We recall that DNA is
also present in plasmids, mitochondria,
and chloroplasts, not just chromosomes.
These decisions also require the use of
variables.

Another technique used by computer
languages is the idea of “sleep” or “wait”
for a fixed or variable time period. We
find many examples in cells, such as

feedback inhibition in enzymatic net-
works, gene deactivation, and placing
the cell cycle on hold.

Other Non-Prescriptive Processing
Most of what happens in computers
results from explicit instructions, but
our analysis of coded information sys-
tems clarifies that additional physical
constraints are also always incorporated
to ensure the intended outcomes. There
are design trade-offs, whether to guide
intention as coded messages or in a hard-
wired physical manner. A computer ex-
ample is when printed paper falls into a
tray with sides that hold them in place. A
considerable amount of cellular success
is based on pure physical-chemical fac-
tors that have been carefully organized,
a topic we discuss in Part 2.

Read and Write
Computer programs read, write, and de-
lete to long-term and short-term memory
devices. The codes found in cells must
be able to read and write data values.
Setting epigenetic tags are examples of
medium and long-term write operations,
which serve to communicate intended
outcomes later. DNA is usually thought

of as a fairly permanent source to read
data from, but DNA can be added to
a genome via CRISPR (Zetsche et al.,
2015; Ran et al., 2015; Gen News High-
lights, 2015), reverse transcription (e.g.,
telomerase reverse transcriptase that
maintains the telomeres of eukaryotic
chromosomes), transfer and acquisi-
tion of new genes via integrons coding
cassettes (Hall and Collis, 1995), and
different lateral gene-transfer mecha-
nisms, including transfer of plasmids, in
prokaryotes. Inteins are another mecha-
nism. These are self-splicing portions of
proteins with homing endonuclease abil-
ity that snip parts of DNA so that a copy
of the coding sequence of the intein can
be inserted there (Gogarten et al., 2002).

DNA can also be modified in other
ways. DNA segments such as transpo-
sons can be transferred to other sites on
the genome, and “shufflons” can invert
sections of DNA, for example, to replace
part of a coding strand with its comple-
mentary strand to create modified pro-
teins (Tam et al., 2005; Komano, 1999).

Multiprocessing and Threading
Modern computer hardware and soft-
ware designs can parallelize computa-
tions, permitting multiple tasks to be
carried out simultaneously. This is
common in cells, such as in the parallel
production of ATP from many mito-
chondria; translation of several identical
mRNAs in parallel (several ribosomes
can also translate the same mRNA si-
multaneously), transcription of multiple
copies of the same gene, the existence
of many cells of the same kind, and the
presence of multiple copies of the same
subcompartments and organelles.

Reuse of Modules
In good software design, the same
general-purpose modules, methods, and
procedures are often reused. A common
approach is to separate identical portions
of coding into smaller modules that
can be invoked from within overarch-
ing modules. This modularity is found

Figure 13. Iteration loops are common in computer and cellular programming.
Conditions are tested to determine when to initiate an iterative process and when
to repeat or terminate it.

296	 Creation Research Society Quarterly

also in cells. As Kirschner and Gerhart
pointed out (2005, p. 137), “The same
pathways are used over and over again
within the same organism for different
purposes. Thus, they must be modified
slightly to interact with a variety of pro-
cesses and to work in different environ-
ments and cell types.” They describe the
interactions as “weak linkages,” which
we recognize as simply variables or
parameters used to link subprocesses in
different manners.

Interchangeable Libraries
In addition to invoking subroutines, sec-
tions of computer code such as classes
are often imported from a library. Simi-
larly, prokaryotes in particular exchange
genetic material through horizontal
(lateral) gene transfer (Thomas and
Nielsen, 2005; Ochman et al., 2000;
Koonin, et al., 2001), whereby genes,
plasmids, and so called “islands” en-
coding specialized adaptive functions
are exchanged (Dobrindt et al., 2004).
This permits a huge amount of coding
to be distributed in the environment and
put to use rapidly when the need arises,
facilitating adaptability. This is a form of
open systems design. Genetic material
can also be transferred into eukaryotes
through vectors such as viruses.

III. File formatting
Shapiro and Sternberg (2005) drew
attention to the parallels between com-
puter file formatting and data storage
in cells:

The explicit parallel with electronic
data systems indicates that the ge-
nomic storage medium has to be
marked, or formatted, with generic
signals so that operational hardware
can locate and process the stored
information. (Shapiro and Sternberg,
2005)

Data storage can be organized physi-
cally in computer and cell technologies
using principles such as sectors, disk par-
titioning, and data segments, discussed
in Part 2. On top of this infrastructure,

software programs organize different
data using file formatting. A program
that interacts with specially structured
file data must be able to access it cor-
rectly, even though the location of the
content could be scattered all over the
physical medium. DNA, RNA, and
proteins are used as read/write/delete
storage devices and need to be properly
formatted so the corresponding “reader”
will work.

The metadata contained in a com-
puter file header can be stored at the
start, end, or other areas of the file.
Likewise, in DNA, RNA, and proteins
formatting instructions need not be
found in only one location. Given the
existence of multiple codes, DNA “files”
are formatted for use in different man-
ners, depending on the program being
used. The various ways DNA are packed,
such as by nucleosomes, determine
which genes can be processed. Preparing
portions of DNA for processing by DNA
polymerase (to identify the starting and
end points, open and unwind the strands,
remove bound histones, etc.) is very
different from the formatting details—
which occur in three dimensions—for
RNA polymerase. The programs that
perform DNA error corrections also
require their own formatting rules.

Epigenetic tags are often used to
identify what data to process and how.
Adding and removing these ligands from
DNA, RNA, and proteins is an example
of preparing files for processing and
must be carefully regulated. Histone
modifications define which portions of
DNA can be processed. Over a hundred
posttranscription modifications have
been identified in all three major RNA
species (tRNA, mRNA and rRNA), as
well as in other families of RNA such as
snRNA (Cantara et al., 2011). Examples
of formatting specifications in DNA
include the use of methylation and de-
methylation (Bird, 2002; Paszkowski and
Whitham, 2001), binding of TFs (Cheng
et al., 2012; Davidson, 2006), and rules
to identify exons (Harrow et al., 2009).

Individual eukaryote mRNAs are
formatted as individual files with begin-
ning and ending metadata in the form
of 5’ capping and 3’ polyadenylation,
attached miRNAs, and so on. This is
necessary to ensure the ribosome pro-
gram will work properly. Different sets
of formatting rules are necessary for
different programs such as separation of
introns and exons by the spliceosome or
to degrade RNA.

Formatting on proteins is common.
Posttranslation modifications (PTM)
include methylation, phosphorylation,
acetylation, ubiquitylation, glycosyl-
ation, and sumoylation (Strahl and Allis,
2000; Jenuwein and Allis, 2001). Struc-
tural three-dimensional recognition
features, generated with alpha coils, beta
sheets, disulfide bonds, hydrophobic
patches, and other features also ensure
correct formatting of proteins. In cells,
all this is precisely regulated, often
down to the atomic level. Reversible
phosphorylation, the most widespread
PTM, occurs on the correct atom of a
serine, threonine, or tyrosine residue
to form phosphomonoesters or on his-
tidine, arginine, and lysine residues to
form phosphoramidates (Cieśla et al.,
2011), all according to the particular
code involved. Recalling the existence
of signal cascades and enzymatic net-
works, proteins are also carriers of data
values that get processed by other sensors
(variables to be assigned values). DNA
and RNA are not the only information
carriers in cells. A modification on a TF
can become a data setting to be used by
the receiving portion of a second TF. For
these reasons we see that proteins can be
formatted and classified into different

“file types.”
Copies of tagged proteins, RNA,

and DNA (like nucleosomes) can be
inherited by somatic daughter cells, and
sometimes the tag is removed from the
daughter cell, generating an empty or
partially empty “file” that can be written
to. In the same way that a program like
Excel cannot process a jpg file, each

Volume 52, Spring 2016	 297

of the cellular information “readers”
process only the data specially format-
ted for it.

Compressed Archival
DNA is compressed and protected for
future use by winding sections of ~ 147
base pairs around a core of 8 positively
charged histone proteins into nucleo-
somes, and then further compacting
the nucleosomes into higher order
chromatin structures complexed with
protein and RNA (Jenuwein and Allis,
2001). The portions of DNA that need
to be expressed must be unpacked and
reformatted properly. The cellular goal
is to save physical space and protect the
medium from degradation. Bacteria
also quickly lose DNA not immediately
needed (and can regain genes via lateral
gene transfer), which saves precious raw
materials and energy. Computer analo-
gies of the principle include programs
like zip and the export of tables by a
database management into a single
export file, all or parts of which can be
retrieved and properly structured for
use later. However, computers use algo-
rithms that recode the original content
using fewer bits, a principle not known
in cells. Inspired by cellular compres-
sion, which transforms essentially linear
DNA into three-dimensional storage,
engineers might consider designing
mass storage devices to also store data
that cannot be used immediately as
is but, like packed DNA, could be
reopened when needed.

Summary and Discussion
Recognizing cells as information pro-
cessing devices is the proper way to un-
derstand their holistic intent and design.
In fact, Gatlin (1972, p. I) defined life as
an “information processing system,” and
Britten (Britten, 2003, p. 82) pointed out,
“We cannot start with DNA and grow a
cell because there must be an adequate
initial state of a cell with a vast multitude
of details under control.” We mentioned

above that cellular information is
partially distributed hierarchically and
recognize that there are many carriers
in the lower, embedded levels. An organ
consists of many cells, each of which
contains many mitochondria, and so
on. In large populations of prokaryotes,
the logic processing is distribution over
many interacting species to form a viable
ecology, whereas in complex eukaryotes
considerably more is concentrated
within the individual organism. In virtu-
ally all biochemical processes, one sees
strong regulation unless the process is
malfunctioning, as in cancerous growth
or viral infection. In other words, there
are always sophisticated rules for when
to begin and countermeasures that pre-
vent runaway processing.

Regulation is best designed and
interpreted using purely formal rules, a
key feature of software engineering. If,
for example, a metabolic chain requires
feedback control to a preceding enzy-
matic reaction, this can be analyzed and
expressed symbolically, along with the
mathematical specifications and control
rules. To instantiate the requirements, a
physically viable solution then needs to
be implemented. No rational engineer
or programmer would think of develop-
ing programs by letting rules and their
implementation pop into existence ran-
domly without any conceptual guidance.

We saw that conceptual software
elements such as iteration and control
structures are developed on top of
data types—each with their unique
properties—organized into variables,
arrays, and linked lists and all this using
well-defined file formatting to facilitate
processing by molecular machines.
Many independent codes found in cells
make use of these principles. It is hard
to overstate how important variables are
in cellular processes to permit regulation
and maximum adaptability. The loca-
tion, timing, and amount of transcrip-
tion by RNA polymerase is defined by
CREs (promoters, enhancers, silencers,
insulators; Kolovos et al., 2012) and

termination by terminator sequences
(Ishihama, 2000).

It would require many volumes to
describe in detail the formal control
structures used by other cellular activi-
ties, such as homologous chromosome
crossing-over, VDJ recombination in
the immune system, nonhomologous
end-joining (NHEJ) of broken DNA
ends, DNA transposons (self-insertion,
excision), telomerase extension, chro-
mosome segregation, DNA compaction,
binding sites affecting DNA spatial or-
ganization into transcription factories in
the nucleus, signals for error correction
and damage repair, and the multitude
of other cellular processes.

There is considerable evidence
that damage through random changes
is actively hindered in cells, such as a
bias for many retrotransposons to insert
upstream of transcription initiation sites
(Shapiro and Sternberg, 2005), which
prevents damage to coding sequences
and enhances the potential for a con-
structive regulatory change. Very often
the regulatory logic makes sense to
humans skilled on symbol logic, but the
details are different across taxa and did
not originate from a common ancestor.
An example is the signal used in E. coli
to repress catabolism (the CRP palin-
dromic binding site for the CRP-cAMP
complex), which is unrelated to that
found in Bacillus subtilis (CRE element
recognized by protein CcpA) (Miwa et
al., 2000).

Coded Systems Can Interact
Although the various codes operate
independently in cells, they can col-
laborate to ensure a fine-tuned outcome.
We mentioned epigenetic codes, which
modify gene expressions, and another
code based on TFs bound to CREs,
which also regulate gene expression.
But in addition, a different code based
on adding and removing ligands—es-
pecially phosphate groups—modify the
TFs themselves (Shapiro 2006). Further-
more, TF half-lives are also regulated

298	 Creation Research Society Quarterly

by the NEnd code. Gene expression is
further affected by other codes which
use various classes of RNAs (siRNA,
snoRNA, miRNA, etc.) that modify
chromatin accessibility, transcription
initiation, transcription elongation, RNA
processing, RNA stability, and mRNA
translation (Mattick and Makunin, 2006;
Taft et al., 2010; Storz and Wassarman,
2005).

By integrating multiple codes, cells
become highly responsive to what is
going on throughout the entire cell and
their external environment. The design
requirements would be overwhelming
for humans. The same stretch of DNA
can be used as variables for some codes
(e.g., CREs, methylation binding loca-
tions, and after transcription to locate
regions on mRNA for miRNA binding
and to specify intron/exon boundary
locations) while simultaneously provid-
ing the data values for other codes (e.g.,
as codons after transcription and as a
template for new DNA copies).

These requirements demand formal
specifications to satisfy all requirements
and to define what is to be done by each
code. Synonymous coding from the
point of view of the genetic code must
identify protein sequences while simul-
taneously controlling translation rates
within regions of mRNA. The DNA-
to-RNA conversion code during tran-
scription also needs to control stalling
of mRNA precursors for spliceosomes
for purposes of siRNA accumulation
as part of a host’s defenses to damaging
transposons (Dumesic et al., 2013).

Collaboration between coding sys-
tems is sometimes linked directly. The
histone modifications, which involve
over 100 protein readers, writers, and
erasers (Carey, 2012, p. 72, 224), some-
times develop protein complexes that
include the enzymes that methylate
CpG motifs on DNA (DNMT3A and
DNMT3B) in the same region the
histone is located (Carey, 2012, pp.
73, 89–90). This is another example of
instantiation using adaptor molecules.

The reverse is also true. The DNA
methylation code can affect the histone
code in a synergistic manner. Meth-
ylation attracts more repressive histone
modifying enzymes (Carey, 2012, pp.
224–226). Similarly, long ncRNAs locate
near imprinted genes (which identify
whether coming from the mother or
father), and these can recruit epigenetic
enzymes such as G9a or EZH2, which
put a methyl tag on lysines K9 and K27of
histone H3 (a second code) to enhance
the imprinting (Ikegami et al., 2009). To
complicate the picture, long ncRNAs
can increase or decrease expression of
target genes for reasons not understood.

The miRNA code also interacts with
enzymes involved in epigenetic codes by
regulating their effective concentration
(Carey, 2012, pp. 231–232).

Stem cells express a very different
set of proteins than differentiated lin-
eages. Not only are different genes de-
activated by blocking TFs bound in the
cis-element region, but also a different
set of miRNAs are switched on (a second
code) to help identify and degrade the
mRNAs no longer needed by that class
of cells (Pauli et al., 2011).

Chemotaxis (ability to swim toward
nutrients and away from noxious stimuli)
uses two codes in E. coli to respond to
more than fifty substances. In the first
one, there are four kinds of receptors
on the membrane that respond to the
environment by phosphorylating the
communication protein CheY, which
can modify the direction of rotation of
the flagellar motor through binding at
certain locations. A second code affects
the four kinds of receptors themselves by
adding and removing methyl groups to
any of eight different sites per receptor.
The receptors are grouped into triplets
on the membrane, so the number of
possible methylation states is astronomi-
cally large. The net outcome of these
two coded processes is to permit the
bacteria to “in effect perform calculus”
(Bray, 2009, p. 94). It is not the absolute
concentration of external stimulant that

determines the decision to change direc-
tion of movement, but rather a large
change in the relative concentration
(Bray, 2009, pp. 89–97).

In Part 2, we flesh out our under-
standing of cells as holistic entries
whose hardware components must also
be taken into account in addition to the
interacting codes. It is wrong to think
DNA provides detailed instructions on
how to assemble an organism. Oyama
(2002) pointed out that “a gene initiates
a sequence of events only if one chooses
to begin analysis at that point: it occupies
no privileged energetic position outside
the flux of physical interactions” (p. 40)
and that “gene transcription and trans-
lation in no way represent instructions
for building a functioning body” (p.
69). She correctly mentioned that the
interactions needed to define organisms
are inherited as already functioning cells
and in a similar environmental context
as the parent (pp. 17–18, 26, 43–49, 77).

Dynamic Nature of Cellular Control
The location of data in computer
memory is rearranged in controlled
manners and address pointers are used
to identify the location of data. For
cells this is also true, but the process is
more sophisticated. A TF can search
for a CRE in three-dimensional space
and is robust to physical degradation of
its target through mutations. Unlike a
computer pointer to a single address, in
cells n identical TFs or other signals can
point to multiple locations to activate
an ensemble of process-related genes.
In computers, a memory address is usu-
ally referenced directly, whereas in cells
often a linked chain of pointers referenc-
ing other pointers lead to the sites to be
activated, which permit refinements,
including fuzzy logic (Kosko and Isaka,
1993; http://zadeh.cs.berkeley.edu) to
be integrated at every step.

Analog Computers
We have not mentioned principles from
the less-known analog computers in this

Volume 52, Spring 2016	 299

introduction to logic processing in cells.
We only wish to point out here that the
wide diversity in sensors responding
to signals can produce a rheostat-like
response (i.e., a continuum of response).
Software designed for digital computers
would process this kind of logic by defin-
ing ranges of values for these variables
and program the appropriate behavior
for each range. This relates to our sug-
gestion above that computer scientists
consider using fuzzy variable and fuzzy
values, being a principle cells use.

Neo-Darwinism Fails to Explain
the Origin of Logic Processing

In The Plausibility of Life, we read, “The
architecture of cells is achieved without
an architect. No central regulation is
discernible. Cells are in fact capable of
many structures; many are chameleons
that change their structure in response
to circumstances” (Kirchner and Ger-
hart, 2005, p. 148). It is correct that
there is no set of instructions on DNA
that specify the detailed order in which
events are to unfold, but this does not
deny an architect; in fact, it indicates
a creator who designed for adaptability
to changing circumstances (Truman,
2015). As mentioned above, a virtually
unlimited variety of responses can be
executed by using enough variables
and their values. Adaptability is found
everywhere in biology, not only within
cells. Gilbert (2003) provides several
examples of dramatic polyphenism, or
open systems adaptability, such as sex
determination of blue-headed wrasse
larva depending upon the presence
of other males or females nearby; diet
in caterpillars, which enables them to
change their morphology to camouflage
themselves according to season when
born; and predator-secreted chemicals.

Cellular process must be initiated
and stopped. Runaway execution would
rarely if ever be acceptable, but why
should the termination rules develop
in advance of these thousands of formal
logic-guided processes? Which evolved

first, the process or the means to turn it
off? Natural processes cannot look ahead
to plan complex solutions to make cells
and entire organisms adaptable. Gene
regulatory networks, signal cascades,
metabolic networks (Figure 14), and
the operation of molecular machines are
regulated at many levels using program-
ming constructs recognizable by human
designers.

There is no analogy in inanimate
matter of codes being used to express
an intended result to ensure continued
system integrity. This will become clear
after examining in the next paper how
extraordinarily complex the molecular
machines are which are needed to
implement the code specifications.

In Figure 15, we clarify the principle,
which is not found anywhere in inani-
mate nature.

The intuition is that a system with
complex internal components will be
repetitively confronted with a decision
that can be freely made, independent
of chemical or physical compulsion.
For each iteration a particular choice
between alternative paths is correct to
facilitate the survival of the system (plus
the decision-making apparatus), based
on current circumstances.

The cell is full of this decision prin-
ciple, such as where to initiate and stop
transcription, which amino acid to add
next to a growing protein, and where a
restriction enzyme should cut.

Figure 14. Enzyme chain including feedback in aromatic amino acid synthesis
(Fell, 1997, p. 209).

300	 Creation Research Society Quarterly

We do not find any examples in in-
animate nature, even though this is but
a minimalist requirement. We are not
demanding this occurs reliably a huge
number of times (like millions of correct
peptide bonds during a cell’s lifetime)
or that it be able to manufacture all its
key components, or that the entire ap-
paratus be reliably replicated for many
generations. We ask only for examples
showing the basic concept is found in
some elementary way in inanimate
nature. Otherwise, no evolutionary
theory is justified in simply assuming
grotesquely more complex cells arose in
the absence of intelligent guidance. This
is essentially asking about the origin of
information, like the sequence of codons
specifying the correct protein chains.

We know from computer technolo-
gies how important proofreading and
error correction (parity bit rules, etc.)
are during data storage and transmis-
sion. In cells, this is far more important,
given the many examples of iteration

and millions of decisions per second
involved. We will consider just one code,
the genetic code, to illustrate the need
for extreme reliability. If the multiple
copies of mRNA and their translation
products were error prone, this would
lead to error catastrophe during the cell’s
lifetime. Each new batch of flawed pro-
teins and RNA would lead to ever more
defective transcription factors, RNA
polymerases, ribosomes, spliceosomes,
error-correcting enzyme complexes
and posttranslation machines, thereby
producing ever more defective proteins
and RNA the next time around. The
same, of course, is also true about all
the components inherited by daughter
cells, in particular flawed DNA copies.

Is this a serious problem? The
probability that an amino acid will be
translated correctly depends on many
factors, but suppose that in the distant
evolutionary past, before elaborate
error-correcting molecular machines
existed, natural processes had somehow

miraculously reached a state where each
of the twenty amino acids was translated
correctly with an average probability of
0.80 and that proteins back then were
on average only 200 residues long. The
chance of obtaining a correctly trans-
lated protein would be (0.8)200 = 4x10–20.

One recent study of 40 proteins
examined in HeLa cells concluded that
the lowest number of copies per cell at
a given time was for the oncogene FOS
(6000 copies), and the most abundant
was vimentin (20 million copies) (Zeiler
et al., 2012). An ancient primitive or-
ganism would not have so many copies.
We would not expect to get even one
correctly translated protein but a sea of
hopelessly flawed, misfolded, and de-
structively interacting ones (for a more
exact analysis see Part 2). Even if the cell
could somehow recognize and degrade
mistranslated ones (somehow using
molecular machines that themselves are
hopelessly corrupted), the energy cost
to produce enough attempts to gener-
ate thousands of necessary good copies
would be prohibitive.

What is the reality in all cells studied?
Success rates on the order of “only” 0.8
per monomer copied? Many processes
recognize and correct errors, such as
when DNA is replicated or tRNAs are
charged. In exonuclease proofreading
during DNA replication, a mismatched
duplex is identified and the most recent-
ly incorporated nucleotides removed
and replaced, eliminating about 99.9%
of accidental misincorporations from
the nascent strand (Kunkel Bebenek,
2000; Ibarra et al., 2009). A second
mechanism, postreplication mismatch
repair, then corrects about 99% of those
misincorporations that escape exonucle-
ase proofreading (Modrich and Lahue,
1996; Kunkel and Erie, 2005). There
is also a molecular machine to repair
double-strand (DS) breaks (Brissett and
Doherty, 2009).

The other codes must also be highly
accurate. TFs could bind to a multitude
of wrong locations on DNA; epigenetic

Figure 15. In inanimate nature we find no examples of systems with complex
internal structure repetitively facing a contingent decision and then making the
correct choice for each iteration based on which outcome supports survival of
the system during that iteration.

Volume 52, Spring 2016	 301

tags on histones or DNA must be care-
fully controlled; flawed signal sequences
would cause proteins to be secreted
improperly; etc. Furthermore, the coded
variables and variable values must be
replicated accurately over many genera-
tions, not just the organism’s lifetime.
A distinct combination of millions of
methyl tags on DNA cytosines is unique
to each cell type and needs to be repli-
cated in daughter cells (Carey. 2012, p.
60) as shown in Figure 16.

We do not know how accurately
the methylation pattern per CpG must
be replicated for the daughter lineages
to still work, but suppose it would be
enough if “merely” 1/10,000 need to
be correct (i.e., 99.99% error rate would
not matter, the resulting pattern would
still work). Per replication and one mil-
lion CpGs, a successful outcome would
only occur 4x10–44 of the time (i.e.,
0.99991000000), even given such generous
constraints. In other words, getting an ac-
ceptable copy will not occur even if only
1/10,000 tag positions need be correct
on average. We conclude that evolving
this new function cannot start crude and
be refined by random mutations, since
natural selection would have nothing
functional or consistent to work on.

Many researchers, especially those of
a neo-Darwinian persuasion, continue
to downplay the evidence for deliber-
ate planning found in cells, preferring
to hold on to the myth that most the
genome is junk instead of facing the
reality of multiple codes and an over-
arching systems design. The origin of
complex features is assumed to result
from random mutations followed by
natural selection without recognizing
or addressing the origin of formal logic
processing (Dawkins, 1996). Absent in-
formational guidance, the only alterna-
tive is to believe in a series of naturalist
miracles, such as an initial functional ge-
netic apparatus followed by many more
miracles including a regulated energy
source (ATP molecules) and require-
ments such as being able to distribute

chromosomes and other components
to daughter cells.

Is this also a probabilistic nightmare?
There are 2(46 x 2) = 5x1027 ways to distrib-
ute human chromosomes during mitotic
cell division (Page and Hieter, 1999), of
which only one is correct. There is a bet-
ter chance to guess two people correctly
in a row out of everyone who ever lived.
And these odds need to be overcome by
every surviving cell every generation, so
once again error cascade is the natural

consequence until the process is close
to flawless. Natural selection is only
relevant once the system has attained
miracle-level perfection.

In general, whenever we come
across the terms “convergent evolution,”

“genetic piracy,” or “co-optatation,” we
will discover a failure of neo-Darwinian
theory and in all likelihood further evi-
dence that logic processing elements are
being deliberately reused in unrelated
organisms. For many years the very small

Figure 16. DNA methylation patterns need to be replicated in daughter cells
during somatic cell division. After each DNA strand is separated and the second
strand copied, the DNMT1 enzyme searches for CpG motifs and transfers a
methyl (Met) group to the new strand where needed. This results in two new
copies carrying the original methylation pattern.

302	 Creation Research Society Quarterly

amount of data available was misused
(and continues to be) to claim that a
gene expressed as part of the same or
similar processes reveals common ances-
try. In the words of Striedter (Striedter,
2003, p. 287), “Unfortunately, we now
know that most genes are expressed in
several different locations and that many
homologies based on the expression pat-
terns of single genes have turned out to
be controversial, to say the least.”

Until one accepts that cells are
designed logic processors, much data
will continue to be misunderstood. The
same transcription factor or the same
cis-factor pattern could be reused for
biologically unrelated purposes across
the biosphere. In programming, we also
find software elements such as “for (int
i = 0; i < myList.size(); i++)” in many
programs, but this does not imply the
programs are related in any manner.
The i and myList could represent totally
different things.

In discussing the Pax-6 gene found
in vertebrates, Drosophila, squid, and
even flatworms, Willmer provides an
example: “Although this could imply a
common starting point for all eyes, it is
more likely an example of the univer-
sality of positional and pattern-forming
determination systems in animals. Note
also that while Pax-6 in vertebrates is ho-
mologous to the Drosophila gene eyeless,
other genes related to eye formation in
vertebrates match bizarrely with genes
involved in appendage formation and
with muscle formation in fruit flies; and
that Pax-6 also regulates the unrelated
phenomenon of nasal placode formation
in vertebrates” (Willmer, 2003, p. 38).

Premature evolutionary speculation,
treated and repeated for decades as prov-
en scientific fact, is being increasingly
corrected. Discussing the claim that
the gene engrailed, which is expressed
in both Drosophila and chordate meta-
meres, proves that segmentation of body
parts goes back 500 million years ago to
a common ancestor, Willmer explained
what more data now actually reveals:

“This now seems an overinterpretation.
Although homeobox proteins function
as transcription factors for other genes,
the genes they regulate are often quite
unrelated to segmentation. Furthermore,
this same Hox sequence appears in a far
greater range of animals, including un-
segmented nematodes and echinoderms”
(Willmer, 2003, p. 39). After providing
other examples, Willner then arrives at
the correct intuition: “The similarity of
genes … may lie in processes rather than
in real homology” (p. 40).

Scientific Guidance through
the Design Presupposition

The NIH Roadmap Epigenomics Con-
sortium is collecting a huge database
with DNA accessibility, RNA expres-
sion, histone modification, and DNA
methylation patterns for 111 human
reference epigenomes (Kundaje et al.,
2015). One goal is to identify regulatory
modules that arise during cell lineage
specification and differentiation. This
is representative of the general direction
modern cellular research is beginning
to take, where it has become indispens-
able to apply principles from symbolic
logic processing to understand in detail
the design of cells. Speculative neo-
Darwinism is at best post-facto storytell-
ing; it provides no insights into the big,
interesting biological questions.

The view that cells were deliberately
designed to be robust and adaptable
for long-term viability and interactivity,
along with the insights of logic process-
ing principles from computer program-
ming, stimulates many fruitful ideas
to guide future ideas that do not arise
from the evolutionary worldview. Freed
from the shackles of possible biological
functions being constrained to what a
primitive common ancestor initially
provided and a limitation on mutational
accidents to generate nontrivial novelty,
we suggest how our paradigm provides
value to guide future research.
1.	 Cells will be found to be more adapt-

able than suspected to situations

not encountered before, and when
the mechanisms are researched,
we will find the adaptive logic has
coding aspects, meaning the vari-
ables were already there and able
to process additional values. Asking
how one would formally design an
optimized outcome, independent of
any misguided prejudice from com-
mon ancestry constraints, should
help identify new cellular control
processes. (Post-facto claims for
unexpected “convergence” is scien-
tifically worthless and contradicts
neo-Darwinian expectations.)

2.	 Many more forms of complex
regulation remain to be discovered
than suspected. No iterative process
will be found that lacks a formal
set of rules on how to initiate and
terminate (unless malfunctioning).
Whenever it would make sense for
the concentration and distribution
of biomolecules to vary, we predict
evidence will be found this has
been implemented in a context-
appropriate fashion.

3.	 Given our conviction that cells were
designed to function as holistic and
integrate entities, we predict ever
more discoveries of interconnectiv-
ity between codes so that inputs
throughout the entire cell and eco-
system can be taken into account
to regulate processes optimally. We
expect much will become clear only
as the optimization trade-offs are
understood and that quantitative
analysis will reveal there could not
have been nearly enough evolution-
ary trial-and-error attempts to explore
and fine-tune these optimized trade-
offs.

4.	 More quality control checks will be
discovered at key processing points.
Researchers should search for error
checks/correction during transcrip-
tion to RNA and other key interfaces.
Considering the value to cells of
recycling valuable raw materials
of every kind, we anticipate novel

Volume 52, Spring 2016	 303

discoveries designed to ensure this.
Conversely, if substances (like cyclic
RNAs) are found to be long-lived, we
suggest the Creator had a biological
reason.

5.	 We expect that when important
alternative pathways are available,
the overall optimal one under
those circumstances is selected un-
less clearly malfunctioning. As an
example, whether to attempt error
correction or initiate apoptosis is a
significant decision for cells based
on complex cost/benefit/risk trade-
offs. We expect a careful quantita-
tive application of decision theory
principles—including Bayesian sta-
tistics—to reveal that the outcome
selected is overall rational.

6.	 For every difficult step creating a
critical potential processing bottle-
neck, mechanisms will be found
that resolve these, in the same way
that we expect that an enzyme will
be found to catalyze all key bio-
chemical reactions impacting the
survival of a cell. We also anticipate
that variants of current enzymes and
processes can easily be generated
when it makes sense. This is based
on our view that general-purpose so-
lutions were often designed, which
like good open systems design, are
adaptable. Optimized adaptability
has nothing to do with the naturalist
assumptions going under the label
evolution.

7.	 Since we believe organisms were
created optimally (with the goal of
filling the earth’s ecosystems) but
have accumulated errors over time,
we will discover residual evidence for
functioning solutions in the past, at
the cellular or higher level, which do
not work as well as before, especially
for organisms that have undergone
population-size bottlenecks. Apply-
ing design reasoning to describe how
ideal solutions would work will help
us understand how things might
have worked before.

8.	 We will discover multidimensional
forms of data storage and retrieval
not known for computers. These
will be sophisticated beyond any-
thing a naturalist would dare pre-
dict. We anticipate the existence of
extraordinary code-based methods
to store, retrieve, index, network,
and consolidate in fuzzy logic and
other mathematical forms all kinds
of multimedia data (smell, vision,
taste, sound, tactile memories,
reasoning chains, numbers, facts,
etc.) in ensembles of brain cells.
We dare predict human minds will
be found to be able to interact with
these codes in read/write fashion to
actively guide queries in a parallel
processing fashion.

Acknowledgments
We wish to thank Dr. Peer Terborg and
Dr. Niko Winkler for many fruitful dis-
cussions. We thank Dr. Michael Heisig
for considerable help obtaining much
of the literature cited here, Wort und
Wissen in Germany for many confer-
ences and opportunities to discuss these
topics, Creation Ministries International
for years of fruitful collaboration in this
area, and Jonathan Bartlett for a detailed
review of an earlier draft.

References
André, A., H. Kaltner, J.C. Manning,

P.V. Murphy, and H.J. Gabius. 2015.
Lectins: getting familiar with trans-
lators of the sugar code. Molecules
20:1788–1823.

Aricescu, A.R., and E.Y. Jones. 2007. Im-
munoglobulin superfamily cell adhesion
molecules: zippers and signals. Current
Opinion in Cell Biology 19:543–550.

Ashcroft, S.J. 1997. Intracellular second
messengers. Advances in Experimental
Medicine and Biology. 426:73–80.

Audit, B., and C.A. Ouzonis. 2003. From
genes to genomes: universal scale-
invariant properties of microbial chromo-

some organization. Journal of Molecular
Biology 332:617–633.

Barbieri, M. 2003. The Organic Codes. An
Introduction to Semantic Biology. Cam-
bridge University Press, Cambridge, UK.

Barbieri, M. (ed.). 2009. The Codes of Life:
The Rules of Macroevolution. Springer.
(See especially chapter 8 by Mario
Gimona.)

Barash, Y., et al. 2010. Deciphering the splic-
ing code. Nature 465:53–59.

Bass, B.L. 2002. RNA editing by adenosine
deaminases that act on RNA. Annual
Review Biochemistry 71:817–846.

Bernardi, G. 1990. Le génomes des vertébrés:
organization, fonction et evolution. Bio-
futur 94:43–46.

Bird, A. 2002. DNA methylation patterns and
epigenetic memory. Genes and Develop-
ment 16:6–21.

Bogdan, C. 2001. Nitric oxide and the regu-
lation of gene expression. Trends in Cell
Biology. 11:66–75.

Bonifacino, J.S., and B.S. Glick. 2004. The
mechanisms of vesicle budding and fu-
sion. Cell 116:153–166.

Bray D., and T. Duke. 2004. Conformational
spread: the propagation of allosteric
states in large multiprotein complexes.
Annual Review of Biophysics and Biomo-
lecular Structure 33:53–73.

Bray, D. 2009. Wetware: A Computer in Every
Living Cell. Yale University Press, New
Haven, CT.

Briscoe, J., A. Pierani, T.M. Jessell, and J.
Ericson. 2000. A homeodomain protein
code specifies progenitor cell identity
and neuronal fate in the ventral neural
tube. Cell 101:435–445.

Brissett, N.C., and A.J. Doherty. 2009. Re-
pairing DNA double-strand breaks by the
prokaryotic non-homologous end-joining
pathway. Biochemical Society Transac-
tions 37:539–545.

Britten, R.J. 2003. Only details determine. In
Müller, G.B., and S.A. Newmann (edi-
tors), Origination of Organismal Form:
Beyond the Gene in Development and
Evolutionary Biology, pp. 75–86. MIT
Press, Cambridge, MA.

Cantara, W.A., P.F. Crain, J. Rozenski, J.A.

304	 Creation Research Society Quarterly

McCloskey, K.A. Harris, X. Zhang,
F.A.P. Vendeix, D. Fabris, and P.F. Agris.
2011. The RNA modification database,
RNAMDB: 2011 update. Nucleic Acids
Research 39(suppl 1): D195-D201.

Capelson, M., and V.G. Corces. 2004.
Boundary elements and nuclear organi-
zation. Biology of the Cell 96(8):617–29.

Carey, N. 2012. The Epigenetics Revolution:
How Modern Biology Is Rewriting Our
Understanding of Genetics, Disease and
Inheritance. Icon Books Ltd., London,
UK.

Caydasi, A.K., B. Ibrahim, and G. Pereira.
2010. Monitoring spindle orientation:
spindle position checkpoint in charge.
Cell Division 5:28.

Cech, T.R. 2002. Ribozymes, the first 20
years. Biochemical Society Transactions
30(6):1162–1166.

Cessac, B., H. Paugam-Moisy, and T.
Viéville. 2010. Overview of facts and
issues about neural coding by spikes.
Journal of Physiology – Paris 104:5–18.

Chambon, P. 1995. The molecular and ge-
netic dissection of the retinoid signaling
pathway. Recent Progress in Hormone
Research 50:317–332.

Chen, Y., and J. Jiang. 2013. Decoding the
phosphorylation code in Hedgehog
signal transduction. Cell Research 23(2):
186–200.

Chen, Y.F., N. Etheridge, and G.E. Schaller.
2005. Ethylene signal transduction. An-
nals of Botany 95:901–915.

Cheng et al., 2012. Understanding transcrip-
tional regulation by integrative analysis
of transcription factor binding data.
Genome Research 22:1658–1667.

Chu, H.Y., et al. (2011). From hormones to
secondary metabolism: the emergence of
metabolic gene clusters in plants, Plant
Journal 66(1):66–79.

Chung, W.Y., S. Wadhawan, R. Szklarczyk,
S.K. Pond, and A. Nukrutenko. 2007. A
first look at ARFome: dual-coding genes
in mammalian genomes. PLoS Compu-
tational Biology 3(5): e91.

Ciapponi, L., and G. Cenci. 2008. Telomere
capping and cellular checkpoints: clues
from fruit flies. Cytogenetic and Genome

Research 122(3–4):365–373.
Cieśla, J., T. Frączyk, and W. Rode. 2011.

Phosphorylation of basic amino acid
residues in proteins: important but easily
missed. Acta Biochimica Polonica 58(2):
137–147.

Claverys, J.P., M. Prudhomme, and B.
Martin. 2006. Induction of competence
regulons as a general response to stress in
gram-positive bacteria. Annual Review of
Microbiology 60:451–475.

Cosgrove, M.S., and C. Wolberger. 2005.
How does the histone code work? Bio-
chemistry and Cell Biology 83:468–476.

Crick, F. 1970. Central dogma of molecular
biology. Nature, 227:561–563.

Davidson, E.H. 2006. The Regulatory
Genome: Gene Regulatory Networks in
Development and Evolution. Academic
Press, London, UK.

Davidson, E.H., and D.H. Erwin. 2006.
Gene regulatory networks and the
evolution of animal body plans. Science
311(5762):796–800.

Dawkins, Richard. 1996. The Blind Watch-
maker. W. W. Norton & Company, Inc.,
London, UK.

de Lange, T. 2010. How shelterin solves the
telomere end-protection problem. Cold
Spring Harbor Symposia on Quantitative
Biology 75:167–77.

Dill, K.A., S.B. Ozkan, M.S. Shell, and
T.R. Weikl. 2008. The protein folding
problem. Annual Review of Biophysics
37:289–316.

Dobrindt, U., B. Hochhut, U. Hentschel,
and J. Hacker. 2004. Genomic islands
in pathogenic and environmental micro-
organisms. Nature Reviews Microbiology
2:414–424.

Dufour, Y.S., P.J. Kiley, and T.J. Donohue.
2010. Reconstruction of the core and
extended regulons of global transcription
factors. PLoS Genetics 6(7): e1001027.

Dumesic, P.A., P. Natarajan, C. Chen, I.A.
Drinnenberg, B.J. Schiller, J. Thompson,
J.J. Moresco, J.R. Yates III, D.P. Bartel,
and H.D. Madhani. 2013. Stalled
spliceosomes signal for RNAi-mediated
genome defense. Cell 152(5):957–68.

Emanuelsson, O. 2002. Predicting protein

subcellular localisation from amino
acid sequence information. Briefings in
Bioinformatics 3(4):361–376.

Engelberg-Kulka, H., I. Yelin, and I. Kolod-
kin-Gal. 2009. Activation of a built-in
bacterial programmed cell death system
as a novel mechanism of action of some
antibiotics. Communicative & Integrative
Biology 2(3):211–212.

Fang, S.C., C. de los Reyes, and J.G. Umen.
2006. Cell size checkpoint control by
the retinoblastoma tumor suppressor
pathway. PLoS Genetics 2(10): e167.

Fell, D. 1997. Understanding the Control
of Metabolism. Portland Press Ltd.,
London, UK.

Ficz, G. 2015. New insights into mecha-
nisms that regulate DN methylation
patterning. The Journal of Experimental
Biology 218:14–20.

Flames, N., R. Pla, D.M. Gelman, J.L.R.
Rubenstein, L. Puelles, and O. Marin.
2007. Delineation of multiple subpallial
progenitor domains by the combinato-
rial expression of transcriptional codes.
The Journal of Neuroscience 27(36):
9682–9695.

Forsberg, E.C., and S. Smith-Berdan. 2009.
Parsing the niche code: the molecular
mechanisms governing hematopoietic
stem cell adhesion and differentiation.
Haematologica 94(11):1477–1481.

Fuqua, C., M.R. Parsek, and E.P. Greenberg.
2001. Regulation of gene expression
by cell-to-cell communication: Acyl-
homoserine lactone quorum sensing.
Annual Review of Genetics 35:439–468.

Gabdank, I., et al. 2010. FineStr: a web server
for single-base-resolution nucleosome
positioning. Bioinformatics 26:845–846.

Gabius, H.-J., S. André, J. Jiménez-Barbero,
A. Romero, and D. Solís. 2011. From
lectin structure to functional glycomics:
principles of the sugar code. Trends in
Biochemical Sciences 36(6):298–313.

Gatlin, L.L. 1972. Information Theory and
the Living System. Columbia University
Press, New York, NY.

Gazzaniga, M.S., R.B. Ivry, and G.R. Man-
gun. 2009. Cognitive Neuroscience: The
Biology of the Mind, 3rd edition. W. W.

Volume 52, Spring 2016	 305

Norton & Company, Inc., New York, NY.
Gen New Highlights. 2015. Bacteria use

CRISPR to recognize themselves. http://
www.genengnews.com/gen-news-high-
lights/bacteria-use-crispr-to-recognize-
themselves/81251146/

Gibbs, D.J., J. Bacardit, A. Bachmair, and
M.J. Holdsworth. 2014. The eukaryotic
N-end rule pathway: conserved mecha-
nisms and diverse functions. Trends in
Cell Biology, 24(10):603–611.

Gilbert, S.F. 2003. The reactive genome. In
Müller, G.B., and S.A. Newmann (edi-
tors), Origination of Organismal Form:
Beyond the Gene in Development and
Evolutionary Biology, pp. 87–102. MIT
Press, Cambridge, MA.

Gogarten, J.P., A.G. Senejani, O. Zhaxy-
bayeva, L. Olendzenski, and E. Hilario.
2002. Inteins: structure, function, and
evolution. Annual Review of Microbiol-
ogy 56:263–287.

Gurdon, J.B., J.A. Byrne, S. Simonsson. 2003.
Nuclear reprogramming and stem cell
creation. Proceedings of the National
Academy of Sciences USA 100 (Suppl
1):11819–11822.

Hall, R.M., and C.M. Collis. 1995. Mobile
gene cassettes and integrons: capture
and spread of genes by site-specific re-
combination. Molecular Microbiology
15(4):593–600.

Harrow, J., A. Nagy, A. Reymond, T. Alioto,
L. Patthy, S.E Antonarakis, and R. Guigó.
2009. Identifying protein-coding genes
in genomic sequences. Genome Biology
10:201.

Hegde, R.S., and H.D. Bernstein. 2006.
The surprising complexity of signal se-
quences. Trends in Biochemical Sciences
31(10):563–71.

Hofstadter, D.R. 1980. Gödel, Escher, Bach:
An Eternal Golden Braid. Random
House/Vintage Books, New York, NY.

Holoch, P.A., and T.S. Griffith. 2009.
TNF-related apoptosis-inducing ligand
(TRAIL): a new path to anti-cancer thera-
pies. European Journal of Pharmacology
625(1–3):63–72.

Hou, Y.M., and P. Schimmel. 1988. A simple
structural feature is a major determinant

of the identity of a transfer RNA. Nature
333:140–145.

Huen, M.S., and J. Chen. 2010. Assembly
of checkpoint and repair machineries at
DNA damage sites. Trends in Biochem
ical Sciences 35(2):101–108.

Hughes, T. 2008. Cracking the second
genetic code. FASEB Journal 22:262.2.

Hurst, L.D., C. Pál, and M.J. Lercher. 2004.
The evolutionary dynamics of eukaryotic
gene order. Nature Reviews Genetics
5:299–310.

Ibarra, B., et al., 2009. Proofreading dynam-
ics of a processive DNA polymerase.
EMBO Journal 28(18):2794–2802.

Ikegami, K., J. Ohgane, S. Tanaka, S. Yagi,
and K. Shiota. 2009. Interplay between
DNA methylation, histone modifica-
tion and chromatin remodeling in stem
cells and during development. Interna-
tional Journal of Developmental Biology
53:203–214.

Ishihama, A. 2000. Functional modulation
of Escherichia coli RNA polymerase. An-
nual Review of Microbiology 54:499–518.

Ishikawa, K., H. Ishii, and T. Saito. 2006.
DNA damage-dependent cell cycle
checkpoints and genomic stability. DNA
and Cell Biology 25:406–411.

Jády, B.E., P. Richard, E. Bertrand, and T.
Kiss. 2006. Cell cycle-dependent re-
cruitment of telomerase RNA and Cajal
bodies to human telomeres. Molecular
Biology of the Cell 17 (2):944–54.

Jaenisch, R., and A. Bird. 2003. Epigenetic
regulation of gene expression: how the
genome integrates intrinsic and envi-
ronmental signals. Nature Genetics 33
(Suppl):245–254.

Janke, C. 2014. The tubulin code: molecu-
lar components, readout mechanisms,
and functions. Journal of Cell Biology
206(4):461–472.

Jenuwein, T., and C.D. Allis. 2001. Translat-
ing the histone code. Science 293:1074–
1080.

Jessell, T.M. 2000. Neuronal specification
in the spinal cord: inductive signals and
transcriptional codes. Nature Genetics
1:20–29.

Jolma, A., Y. Yin, K.R. Nitta, K. Dave, A.

Popov, M. Taipale, M. Enge, T. Kivioja,
E. Morgunova, and J. Taipale. 2015.
DNA-dependent formation of transcrip-
tion factor pairs alters their binding
specificity. Nature 527:384–388.

Jones, P.A. 2012. Functions of DNA meth-
ylation: islands, start sites, gene bodies
and beyond. Nature Reviews Genetics
13(7):484–92.

Juven-Gershon, T., and J.T. Kadonaga. 2010.
Regulation of gene expression via the
core promoter and the basal transcrip-
tional machinery. Developmental Biol-
ogy 339(2):225–229.

Kadyrova, L.Y., et al. 2013. A reversible
histone h3 acetylation cooperates with
mismatch repair and replicative poly-
merases in maintaining genome stability.
PLoS Genetics 9:e1003899.

Keverne, E.B., D.W. Pfaff, and I. Tabansky.
2015. Epigenetic changes in the develop-
ing brain: effects on behavior. Proceed-
ings of the National Academy of Sciences
112(22):6789–6795.

Kirschner, M.W., and J.C. Gerhart. 2005.
The Plausibility of Life: Resolving Dar-
win’s Dilemma. Yale University Press,
New Haven, CT.

Klipp, E., W. Liebermeister, C. Wierling,
A. Kowald, H. Lehrach, and R. Herwig.
2009. Systems Biology. Wiley-VCH
Verlag GmbH & Co. KgaA, Weinheim,
Germany.

Kolovos, P., T.A. Knoch, F.G. Grosveld,
P.R. Cook, and A. Papantonis. 2012.
Enhancers and silencers: an integrated
and simple model for their function.
Epigenetics & Chromatin 5:1–8.

Komano, T. 1999. Shufflons: multiple in-
version systems and integrons. Annual
Review of Genetics 3:171–191.

Koonin, E.V., K.S. Makarova, and L. Ara-
vind. 2001. Horizontal gene transfer in
prokayrotes: quantification and classifi-
cation. Annual Review of Microbiology
55:709–742.

Kosko, B., and S. Isaka. 1993. Fuzzy logic.
Scientific American July:76–81.

Krysko, D.V., et al. 2005. Gap junctions and
the propagation of cell survival and cell
death signals. Apoptosis 10:459–469.

306	 Creation Research Society Quarterly

Kundaje, A. et al. 2015. Integrative analysis
of 111 reference human epigenomes.
Nature 518:317–330.

Kunkel, T.A., and K. Bebenek. 2000. DNA
replication fidelity. Annual Review of
Biochemistry 69:497–529.

Kunkel, T.A., and D.A. Erie. 2005. DNA
mismatch repair. Annual Review of Bio-
chemistry 74:681–710.

Lazazzera, B.A. 2001. The intracellular func-
tion of extracellular signaling peptides.
Peptides 22:1519–1527.

Lee, H.J., T.A. Hore, and W. Reik. 2014.
Reprogramming the methylome: erasing
memory and creating diversity Cell Stem
Cell 14:710–719.

London, M., and M. Hausser. 2005. Den-
dritic computation. Annual Review of
Neuroscience 28:503–532.

Markram, H., et al. 2015. Reconstruction
and simulation of neocortical microcir-
cuitry. Cell 163:456–492.

Marquardt, T., and S.L. Pfaff. 2001. Crack-
ing the transcriptional code for cell
specification in the neural tube. Cell
106:651–654.

Mattick, J.S., and I.V. Makunin. 2006. Non-
coding RNA. Human Molecular Genet-
ics 15(1):R17-R29.

Michalak, P. 2008. Coexpression, coregula-
tion, and cofunctionality of neighboring
genes in eukaryotic genomes. Genomics
91(3):243–248.

Miller, K.M., et al. 2010. Human HDAC1
and HDAC2 function in the DNA-dam-
age response to promote DNA nonho-
mologous end-joining. Nature Structural
and Molecular Biology 17:1144–1151.

Miwa, Y., A. Nakata, A. Ogiwara, M. Yama-
moto, and Y. Fujita. 2000. Evaluation
and characterization of catabolite-
responsive elements (cre) of Bacil-
lus subtilis. Nucleic Acids Research
28:1206–1210.

Modrich, P., and R. Lahue. 1996. Mismatch
repair in replication fidelity, genetic
recombination, and cancer biology. An-
nual Review of Biochemistry 65:101–133.

Moller-Krull, M., et al. 2008. Beyond
DNA: RNA editing and steps toward
Alu exonization in primates. Journal of

Molecular Biology 382(3):601–599.
Montañez, G., R.J. Marks II, J. Fernan-

dez, and J.C. Sanford. 2013. Multiple
overlapping genetic codes profoundly
reduce the probability of beneficial
mutations. In Marks, R.J. II, M.J. Behe,
W.A. Dembski, B.L. Gordon, and J.C.
Sanford (editors), Biological Information:
New Perspectives, pp. 139–167. World
Scientific, Tuck Link, Singapore.

Müller, G.B., and S.A. Newmann (editors).
2003. Origination of Organismal Form:
Beyond the Gene in Development and
Evolutionary Biology. MIT Press, Cam-
bridge, MA.

Murai, K.K., and E.B. Pasquale. 2004. Eph
receptors, ephrins, and synaptic function.
Neuroscientist 10:304–314.

Murphy, P.V., S. André, and H.-J. Gabius.
2013. The third dimension of reading
the sugar code by lectins: design of
glycoclusters with cyclic scaffolds as
tools with the aim to define correlations
between spatial presentation and activity.
Molecules 18:4026–4053.

Musacchio, A. 2011. Spindle assembly
checkpoint: the third decade. Philosophi-
cal Transactions of the Royal Society of
London B, Biological Sciences 366(1584):
3595–604.

Neel, N.F., E. Schutyser, J. Sai, G.H. Fan,
and A. Richmond. 2005. Chemokine
receptor internalization and intracellular
trafficking. Cytokine and Growth Factor
Reviews 16:637–658.

Nezi, L., and A. Musacchio. 2009. Sister
chromatid tension and the spindle as-
sembly checkpoint. Current Opinion in
Cell Biology 21:785–795.

Nguyen, V.C., et al. 2010. Replication stress
checkpoint signaling controls tRNA gene
transcription. Nature Structural and
Molecular Biology 17(8):976–81.

Nicolelis, M.A.L., and S. Ribeiro. 2006.
Seeking the neural code. Scientific
American 295:70–77.

Nishikura, K. 2010. Functions and regula-
tion of RNA editing by ADAR deami-
nases. Annual Review of Biochemistry
79:321–349.

Noble, D. 2015. Evolution beyond neo-

Darwinism: a new conceptual frame-
work. Journal of Experimental Biology
218:7–13.

Ochman, H., J.G. Lawrence, and E.A. Grois-
man. 2000. Lateral gene transfer and the
nature of bacterial innovation. Nature
405:299–304.

Osbourn, A.E., and B. Field. 2009. Operons.
Cellular and Molecular Life Sciences
66(23):3755–3775.

Oyama, S. 2002. The Ontogeny of Informa-
tion: Developmental Systems and Evolu-
tion. 2nd edition. Duke University Press,
Durham, NC.

Page, A.M., and P. Hieter. 1999. The
anaphase-promoting complex: new
subunits and regulators. Annual Review
of Biochemistry 68:583–609.

Paszkowski, J., and S.A. Whitham. 2001.
Gene silencing and DNA methylation
processes. Current Opinion in Plant
Biology 4:123–129.

Pauli, A., J.L. Rinn, and A.F. Schier. 2011.
Non-coding RNAs as regulators of em-
bryogenesis. Nature Reviews 12:136–149.

Pelkmans, L. 2005. Viruses as probes for
systems analysis of cellular signaling,
cytoskeleton reorganization and endo-
cytosis. Current Opinion in Microbiology
8:331–337.

Pollard, T.D., and G.G. Borisy. 2003. Cel-
lular motility driven by assembly and
disassembly of actin filaments. Cell
112:453–465.

Pool, M.R. 2005. Signal recognition particles
in chloroplasts, bacteria, yeast and mam-
mals (review). Molecular Membrane
Biology 22:3–15.

Putnam, C.D., E.J. Jaehnig, and R.D. Kolod-
ner. 2009. Perspectives on the DNA dam-
age and replication checkpoint responses
in Saccharomyces cerevisiaem. DNA
Repair 8(9):974–82.

Ran, F.A., et al. 2015. In vivo genome edit-
ing using Staphylococcus aureus Cas9.
Nature 520(7546):186–191.

Readies, C., and M. Takeichi. 1996. Cad-
herine in the developing central nervous
system: an adhesive code for segmental
and functional subdivisions. Develop-
mental Biology 180:413–423.

Volume 52, Spring 2016	 307

Rino, J., and M. Carmo-Fonseca. 2009. The
spliceosome: a self-organized macromo-
lecular machine in the nucleus? Trends
in Cell Biology 19(8):375–84.

Sabelli, P.A., et al. 2013. Control of cell pro-
liferation, endoreduplication, cell size,
and cell death by the retinoblastoma-
related pathway in maize endosperm.
Proceedings of the National Academy of
Sciences USA 110:E1827–1836.

Salih, F., et al. 2008. Epigenetic nucleo-
somes: Alu sequences and CG as nucleo-
some positioning element. Journal of
Biomolecular Structure and Dynamics
26:9–16.

Schmidt, C.K., and S.P. Jackson. 2013. On
your mark, get SET(D2), go! H3K36me3
primes DNA mismatch repair. Cell
153:513–515.

Schneider, R., and R. Grosschedl. 2007.
Dynamics and interplay of nuclear
architecture, genome organization, and
gene expression. Genes and Development
21:3027– 3043.

Schübeler, D. 2015. Function and infor-
mation content of DNA methylation.
Nature 517:321–326.

Scruton, R. 1996. A Short History of Modern
Philosophy. Routledge, Abingdon-on-
Thames, UK.

Searle, J.S., et al. 2011. Proteins in the
nutrient-sensing and DNA damage
checkpoint pathways cooperate to re-
strain mitotic progression following DNA
damage. PLoS Genetics 7(7):e1002176.

Segal, E., et al. 2006. A genomic code
for nucleosome positioning. Nature
442:772–778.

Segurado, M., and J.A. Tercero. 2009.
The S-phase checkpoint: targeting the
replication fork. Biology of the Cell
101:617–627.

Serganov, A., and D.J. Patel. 2007. Ribo-
zymes, riboswitches and beyond: regula-
tion of gene expression without proteins.
Nature Reviews Genetics 8:776–790.

Shapiro, J.A. 2006. Genome informatics: the
role of DNA in cellular computations.
Biological Theory 1(3):288–301.

Shapiro, J.A. 2011. Cognitive aspects of
genome function. Symposium on Neu-

robiological Correlates of Interpersonal
Relations, Freiburg, Germany, October
15.

Shapiro, J.A. 2014. Physiology of the read-
write genome. Journal of Physiology
592.11:2319–2341.

Shapiro, L., and D.R. Colman. 1999. The
diversity of cadherins and implications
for a synaptic adhesive code in the CNS.
Neuron 23:427–430.

Shapiro, J.A., and R. von Sternberg. 2005.
Why repetitive DNA is essential to
genome function. Biological Reviews
80:1–24.

Sidiropoulou, K, E.K. Pissadaki, and P. Poi-
razi. 2006. Inside the brain of a neuron.
EMBO Reports 7(9):886–892.

Signal Peptide Website: An Information
Platform for Signal Sequences and
Signal Peptides. http://www.signalpep-
tide.de/

Sonea, S., and L.G. Mathieu. 2001. Evolu-
tion of the genomic systems of prokary-
otes and its momentous consequences.
International Microbiology 4:67–71.

Song, J. 2007. EMT or apoptosis: a deci-
sion for TGF-beta. Cell Research 17(4):
289–290.

Spencer, P.S., E. Siller, J.F. Anderson, and
J.M. Barral. 2012. Silent substitutions
predictably alter translation elongation
rates and protein folding efficiencies.
Journal of Molecular Biology 422:328–
335.

Stangroom, J., and J. Garvey. 2005. The
Great Philosophers: From Socrates to
Foucault. Arcturus Publishing Limited,
Longdon, UK.

Stanton, T.B. 2007. Prophage-like gene
transfer agents—novel mechanisms
of gene exchange for Methanococcus,
Desulfovibrio, Brachyspira, and Rhodo-
bacter species. Anaerobe 13:43–49.

Storz, G., Altuvia, S., and K.M. Wassarman.
2005. An abundance of RNA regula-
tors. Annual Review of Biochemistry
74:199–217.

Strahl, B.D., and C.D. Allis. 2000. The lan-
guage of covalent histone modifications.
Nature 403:41–45.

Striedter, G.F. 2003. Epigenesis and evolu-

tion of brains: from embryonic divisions
to functional systems. In Müller, G.B.,
and S.A. Newmann (editors), Origina-
tion of Organismal Form: Beyond the
Gene in Development and Evolutionary
Biology, pp. 287–304. MIT Press, Cam-
bridge, MA.

Stuart, L.M., R.A. Ezekowitz. 2005. Phago-
cytosis: elegant complexity. Immunity
22:539–550.

Sugiyama, T., et al. 2005. RNA-dependent
RNA polymerase is an essential compo-
nent of a self-enforcing loop coupling
heterochromatin assembly to siRNA
production. Proceedings of the Na-
tional Academy of Sciences USA 102(1):
152–157.

Sullivan, B.A., M.D. Blower, and G.H.
Karpen. 2001. Determining centromere
identity: cyclical stories and forking paths.
Nature Reviews Genetics 2:584–596.

Taft, R.J., K.C. Pang, T.C. Mercer, M. Ding-
er, and J.S. Mattick. 2010. Non-coding
RNAs: regulators of disease. Journal of
Pathology 220:126–139.

Takada, Y., X. Ye, and S. Simon. 2007. The
integrins. Genome Biology 8(5):215.

Tam, C.K.P., J. Hackett, and C. Morris. 2005.
Rate of inversion of the Salmonella
enterica shufflon regulates expression of
invertible DNA. Infection and Immunity
73(9):5568–5577.

Tejedor, J.R., and J. Valcárcel. 2010. Break-
ing the second genetic code. Nature
465(6):45–46.

Tentner, A.R., et al. 2012. Combined experi-
mental and computational analysis of
DNA damage signaling reveals context-
dependent roles for Erk in apoptosis
and G1/S arrest after genotoxic stress.
Molecular Systems Biology 8:568.

Thanbichler, M., and L. Shapiro. 2008.
Getting organized–how bacterial cells
move proteins and DNA. Nature Reviews
Microbiology 6:28–40.

Thomas, C.M., and K.M. Nielsen. 2005.
Mechanisms of, and barriers to, hori-
zontal gene transfer between bacteria.
Nature Review Microbiology 3:711–721.

Togneri, R., and C.J.S. deSilva. 2003. Fun-
damentals of Information Theory and

308	 Creation Research Society Quarterly

Coding Design. Chapman & Hall/CRC,
Boca Raton, FL.

Tomkins, M.G. 1975. The metabolic code.
Science 189:760–763.

Trifonov, E.N. 1980. Sequence-dependent
deformational anisotropy of chromatin
DNA. Nucleic Acids Research 8:4041–
4053.

Trifonov, E.N. 1981. Structure of DNA in
chromatin. In Schweiger, H. (editor), In-
ternational Cell Biology 1980–1981, pp.
128–138. Springer, Berlin, Germany.

Trifonov, E.N. 2011. Thirty years of multiple
sequence codes. Genomics Proteomics
Bioinformatics 9(1–2):1–6.

Trotta, C.R., F. Miao, E.A. Arn, S.W. Ste-
vens, C.K. Ho, R. Rauhut, and J.N.
Abelson. 1997. The yeast tRNA splicing
endonuclease: a tetrameric enzyme with
two active site subunits homologous to
the archaeal tRNA endonucleases. Cell
89(6):849–858.

Truman, R. 2012. An evaluation of codes
more compact than the natural genetic
code. Journal of Creation 26(2):88–99.

Truman, R. 2012a. Information theory—part
1—overview of key ideas. Journal of
Creation 26(3):101–106. http://creation.
com/cis-1.

Truman, R. 2012b. Information theory—
part 2: weaknesses in current concep-
tual frameworks. Journal of Creation
26(3):107–114. http://creation.com/cis-2.

Truman, R. 2012c. Information theory—part
3: introduction to coded information sys-
tems. Journal of Creation 26(3):115–119.
http://creation.com/cis-3.

Truman, R. 2013. Information theory—part
4: fundamental theorems of coded
information systems theory. Journal of
Creation 27(1):71–77. http://creation.
com/cis-4.

Truman, R. 2015. Nylon-eating bacteria—
part 4: interpretation according to coded
information system theory. Journal of
Creation 29(3):46–52.

van de Lagemaat, L.N., L. Gagnier, P. Med-

strand, and D.L. Mager. 2005. Genomic
deletions and precise removal of trans-
posable elements mediated by short
identical DNA segments in primates.
Genome Research 15(9):1243–1249.

Varshavsky A. 2011. The N-end rule pathway
and regulation by proteolysis. Protein
Science 8:1298–345.

Verdel, A., et al. 2009. Common themes in
siRNA-mediated epigenetic silencing
pathways. International Journal of De-
velopmental Biology 53(2–3):245–257.

Verhey, K.J., and J. Gaertig. 2007. The tubu-
lin code. Cell Cycle 6:(17):2152–2160.

Wagner, S., et al. 2015. The EF-hand Ca2
binding protein MICU choreographs
mitochondrial Ca2 dynamics in arabi-
dopsis. The Plant Cell 27(11):3190–3212.

Walhout, M., M. Vidal and J. Dekker
(editors). 2013. Handbook of Systems
Biology: Concepts and Insights. Elsevier,
London, UK.

Walsh, C.M., and A.L. Edinger. 2010. The
complex interplay between autophagy,
apoptosis, and necrotic signals promotes
T-cell homeostasis. Immunological Re-
views 236:95–109.

Wellik, D.M. 2007. Hox patterning of the
vertebrate axial skeleton. Development
Dynamcs 236:2454–2463.

Widelitz, R. 2005. Wnt signaling through
canonical and non-canonical path-
ways: recent progress. Growth Factors
23:111–116.

Wikipedia. n.d. Von Neumann architecture.
https://en.wikipedia.org/wiki/Von_Neu-
mann_architecture.

Williams, T.L., D.L. Levy, S. Maki-Yonekura,
K. Yonekura, and E.H. Blackburn. 2010.
Characterization of the yeast telomere
nucleoprotein core. Rap1 binds in-
dependently to each recognition site.
The Journal of Biological Chemistry
285:35814–35824.

Willmer, P. 2003. Convergence and hom-
plasmy in the evolution of organiz-
mal form. In Müller, G.B., and S.A.

Newmann (editors), Origination of
Organismal Form: Beyond the Gene in
Development and Evolutionary Biology,
pp. 33–50. MIT Press, Cambridge, MA.

Woodward, T.E., and J.P. Gills. 2012. The
Mysterious Epigenome: What Lies Be-
yond DNA. Kregel Publications, Grand
Rapids, MI.

Wulfing C., I. Tskvitaria-Fuller, N. Bur-
roughs, M.D. Sjaastad, J. Klem, J.D.
Schatzle. 2002. Interface accumulation
of receptor/ligand couples in lymphocyte
activation: Methods, mechanisms, and
significance. Immunological Reviews
189:64–83.

Yamada, S., and W.J. Nelson. 2007. Synapses:
Sites of cell recognition, adhesion, and
functional specification. Annual Review
of Biochemistry 76:267–294.

Young, E. 2001. Packaging proteins may
be second genetic code. New Scientist,
August 9. https://www.newscientist.com/
article/dn1140-packaging-proteins-may-
be-second-genetic-code/

Yuh, C.H., H. Bolouri, and E.H. David-
son. 1998. Genomic cis-regulatory
logic: experimental and computational
analysis of a sea urchin gene. Science
279:1896–1902.

Zeiler, M., W.L. Straube, E. Lundberg, M.
Uhlen, and M. Mann. 2012. A protein
epitope signature tag (PrEST) library
allows SILAC-based absolute quantifi-
cation and multiplexed determination
of protein copy numbers in cell lines.
Molecular & Cellular Proteomics 11(3):
O111.009613.

Zetsche, B., et al. 2015. Cpf1 is a single
RNA-guided endonuclease of a class 2
CRISPR-cas system. Cell 163:759–771.

Zhou, T., N. Shen, L. Yang, N. Abe, J. Hor-
ton, R.S. Mann, H.J. Bussemaker, R.
Gordân, and R. Rohs. 2015. Quantitative
modeling of transcription factor binding
specificities using DNA shape. Proceed-
ings of the National Academy of Sciences
USA 112(15):4654–4659.

