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Introduction
Biological research and interpretation 
have been dominated by philosophical 
naturalism for almost two centuries, es-
pecially when considering the question 
of origins. Deliberate design is often 
rejected as unscientific, which leads to 

even absurd proposals being entertained 
since “something must have happened.” 
This is remarkable, since we interact 
daily with a world affected by conscious 
decision making. If we found a com-
puterlike object on Mars, most would 
not insist on finding an explanation 

limited to deep time, random mutations, 
natural selection, chemistry, and physics. 
Although it would be possible to also 
explain the actions of a chess-playing 
program post-facto by tracing a series of 
internal mechanistic steps, this explana-
tion would be incomplete. It would fail 
to explain the innate ability to anticipate 
and solve novel complex problems.

Prokaryote and eukaryote cells 
can do far more than a chess-playing 
program, being able to solve an aston-
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Cells perform millions of Boolean logic operations every second 
using multiple independent codes with stringent formal rules 

instantiated on DNA, RNA, proteins, sugars, and membranes. These 
codes rely on elementary and concatenated symbols to define variables 
and values that can be written, deleted, and read from long- and short-
term memory. Computer and cellular variables are used with control 
structures such as “GoTo,” subroutine calls, “wait,” and to initiate 
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	    Although variables are identifiable in cells, logic is executed with-
out a readable source code, using hardwired biochemical components 
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decoding MMs, and cellular codes interoperate to incorporate details 
located throughout the cell to permit holistic correct decisions. Tight 
integration between these codes is implemented using adaptor bio-
molecules. DNA, RNA, and proteins are used to define both variables 
and values for independent codes, often in overlapping regions. These 
biomolecules are also needed to create MMs, adaptors, and the rest of 
the infrastructure.

*	 Dr. Royal Truman, Mannheim, Germany, royaltruman@yahoo.com
Accepted for publication April 22, 2016



276	 Creation Research Society Quarterly

ishing variety of unrelated problems 
concurrently. A seemingly endless 
list of contingencies has been antici-
pated, even when the exact details were 
never encountered before by the cell 
or its ancestors. Flexible categories of 
problems have been foreseen. Cells 
perform logic processing in a manner 
surprisingly similar to computers, using 
codes, structured datatypes, variables, 
algorithmic constructs such as Boolean 
logic and iteration, and a hierarchy of 
sophisticated data storage strategies for 
short- and long-term memory. Ignor-
ing this integrated, holistic aspect of 
cells and insisting on a reductionist 
neo-Darwinian explanation for every 
cellular feature prevents answering the 
relevant questions correctly: Where did 
they come from, and why are they there?

Interpreting Biological 
Change and Development

Many complex processes exhibited by 
living systems suggest an intention or 
purpose. Examples include migration of 
birds to specific locations during certain 
time periods, development of adults 
from a fertilized cell, metamorphosis of 
caterpillars into butterflies, and execu-
tion of a strategy based on mental pro-
cesses. This led philosophers long ago to 
embed purpose in physical objects as a 
form of internal will. Aristotle identified 
four kinds of causes for movement and 
change in general—the material, for-
mal, efficient, and final—and claimed 
in Book II of Physics that a stone falls 
because it has an internal nature that 
drives it to attain its natural state. Many 
prominent thinkers since then have tried 
to interpret the specialness of living sys-
tems using notions such as a “formative 
drive,” “living principle,” “life-energy,” 

“entelechy,” and “teleology.” 
Currently, however, science has 

become dominated by reductionist and 
mechanistic thinking typified by books 
such as Jacques Loeb’s The Mechanistic 
Conception of Life published in 1912 

and the works of behaviorist psycholo-
gists—in particular B. F. Skinner—who 
deny the existence of will and mental 
states that perceive and direct behavior. 
This misguided naturalist thinking 
distorts much of what we observe and 
experience. Purpose and guidance are 
apparent and need to be taken into 
account. The existence and operation 
of an orchestra, growth of trees, poker-
playing programs, and so on cannot be 
adequately explained by extrapolation 
from the natural behavior of many 
atoms. Wilhelm Dilthey (1833–1911), 
prominent philosophy professor at the 
University of Berlin, had a special in-
terested in scientific methodology and 
introduced a distinction between the 
humanities (Geisteswissenschaften) and 
natural sciences (Naturwissenschaften). 
He argued correctly that investigative 
methods are often being applied in areas 
they are unsuitable for.

Purpose and guidance in nature 
need to be revisited. In this two-part 
series, we will examine how intent is 
governed in cellular processes, using 
digital computers as a model. We will 
show formal software principles are in-
volved, which are processed by hardware 
molecular machines (Scruton, 1996, p. 
254). University of Chicago microbiol-
ogy professor James Shapiro referred to 
such stored instructions in a recent lec-
ture, pointing out, “Cells use cognitive 
processes (=action based on knowledge) 
in dealing with genomic information” 
(Shapiro, 2011). At the conclusion of 
this analysis, we are reminded of Aris-
totle’s claim that we cannot understand 
any cause for change until we can 
deduce its purpose (Stangroom and 
Garvey, 2005, p. 17). 

Examples of Complex 
Programs in Cells

Prokaryote and eukaryote cells contain 
hundreds of integrated and carefully 
regulated programs such as metabolic 
networks and signal cascades linking 

the environment with gene regulation. 
Complex multicellular organisms dis-
play gene regulatory networks to unfold 
developmental programs and generate 
nervous systems and brain microcir-
cuitries (Markram et al., 2015). We will 
examine these and other examples be-
low and in the next paper. In all cases 
well-defined, logic-processing steps are 
involved, which channel the outcomes.

Coded Information Systems
In a series of papers, Truman introduced 
the theory of coded information systems 
(CISs), a framework to interpret how 
information-driven systems work. A CIS 
consists of linked tools or machines that 
refine outcomes to attain a specific goal 
(Truman, 2012a, 2012b, 2012c, 2013, 
2015) (Figure 1). A coded message must 
play a prominent role between at least 
two members of these linked processes 
to demarcate from simple machines. 
Messages satisfy rules and strict for-
malisms to be interpreted reliably and 
provide flexibility and multipurposes 
(Hofstadter, 1980, p. 26).

Intended outcomes are ensured 
in a CIS through refinements using a 
combination of four possible “refine-
ment factors”: coded messages, sensors, 
physical hardware, and preexisting re-
sources such as data or logic-processing 
algorithms. The model is quantitative, 
measuring the decreased entropy with 
respect to a reference state between each 
refinement step.

Often the CIS first increases the 
range of possible outcomes before 
applying constraining processes. To 
illustrate, the coding portion of a par-
ticular gene specifies a subset of useful 
protein sequences. How has entropy 
been decreased? The reference entropy 
to compare against is the variety of poly-
peptides that could be generated thanks 
to the cellular environment (without 
DNA, RNA polymerase, ribosome, ATP, 
tRNAs, and other resources, these long 
linear chains do not form naturally). The 
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reduction in the entropy of the reference 
sequences versus the sequences coded 
by a gene for a specific purpose defines 
the information gain.

CIS are often embedded hierarchi-
cally. The FO region of ATP synthase 
is a component of the ATP synthase 
molecular machine, which is embedded 
in a mitochondrion, which is part of a 
cell, which is part of an organ, which 
itself is part of an integrated organism 
that contributes to an ecological CIS. 
Coded messages communicate inten-
tion between members of the system. In 
eukaryotes, many subsystems comprise 
an individual organism, whereas in 
prokaryotes there is more distribution 
of effort between collaborating species 
in an ecology with exchange of signals 
and genetic materials via passive uptake 
of DNA (Claverys et al., 2006), conjugal 
transfer, viral transduction, and other 
lateral gene transfer mechanisms (Stan-
ton, 2007).

Indications Cells  
Could Be Computerlike

Modern computer architectures (Von 
Neumann architecture, n.d.) remind us 
of cells. DNA provides long-term storage, 
and the data are not randomly thrown 
together but sensibly structured, even as 
computers use file systems to organize 
related data. Genes in prokaryotes that 
need to be co-expressed are often located 
together and controlled by an operon 
(Osbourn and Field, 2009). In a recent 
study, for every eukaryote analyzed, gene 
order was not statistically random, but 
often those having similar and/or coor-
dinated expression are clustered (Hurst 
et al., 2004; Michalak, 2008; Chu et al., 
2011). Just as data on computer hard 
disks are stored in sectors, Alu-sequence 
containing nucleosomes define regions 
of the DNA (Salih et al., 2008; Trifonov, 
2011).

DNA is a read/write/delete system. 
Data can be reorganized by transposons 

and content added via CRISPR (Clus-
tered Regularly Interspaced Short Pal-
indromic Repeats) (Zetsche et al., 2015; 
Ran et al., 2015), lateral gene transfer, 
and transfer of plasmids in prokaryotes. 
Genomes can also be contracted by 
deletions, such as the removal of trans-
posable elements (van de Lagemaat et 
al., 2005). Portions of DNA are read 
many times and converted to mRNA 
copies—short-term memory—where 
logic processing is performed. Further-
more, mRNA codons specify amino acid 
sequences, so clearly a code exists.

We will focus here in Part 1 on 
formal software features like data types, 
data structures, codes, and algorithms, 
which are useful to solve problems 
using abstract methods, independent 
of the hardware implementation. The 
hardware aspects used by cells will be 
examined in Part 2.

Key Principles to  
Understand How Cells Work

Before showing that cells use formal soft-
ware constructs, we need to devote some 
effort to eliminate a few misunderstand-
ings and introduce some guiding in-
sights: DNA does not provide an explicit 
prescriptive source program readable 
by humans; multiple codes are in use; 
each code requires a distinct alphabet 
and hardware decoder; software and 
hardware are far more integrated than in 
digital computers; and logic processing 
is distributed and hierarchical.

DNA Does Not Provide  
an Explicit Prescriptive  

Source Program
Many still erroneously believe DNA 
contains a prescriptive language con-
taining a complete blueprint or “Book of 
Life:” that specifies in detail the develop-
ment of an organism. As Woodward and 
Gills wrote recently, “This is the shock 
of shocks: that the DNA alone does not 
play the part of the director” (2012, p. 
75). This contrasts with computer pro-

Figure 1. Coded Information Systems sequentially refine behavior through a series 
of processes. Each goal-directing refinement step could be influenced through 
coded messages, sensors, physical hardware, or preexisting resources such as data 
or logic-processing algorithms. At least one process must be guided by coded 
instructions to be a CIS.



278	 Creation Research Society Quarterly

grams, whose logic can be understood 
from the source code. Consider as an 
example (1):

if (A=5 and B=’red’ and 
not C=’Deactivate’) 
then {‘execute follow-
ing instructions’}	 (1)

A line of readable coding such as (1) 
will not be found in DNA or elsewhere 
in a cell, but the variables can be iden-
tified, and logic operations are indeed 
being performed. Can we discern the 
Boolean logic and resulting process-
ing being performed? Yes, empirically. 
Consider as an example of the variables 
A, B, and C three cis-regulatory elements 
(CREs, specific nucleotide patterns on 
DNA). Each value is defined by which 
transcription factor (TF, a protein) is 
attached or “nothing is attached.” The 
logic being performed can be deci-
phered by systematically varying the 
values (Davidson, 2006) and simulated 
with computer programs.

The logic is implicit but very real, 
and built into the system as whole, and 
for good reasons. Cells have far greater 
functionality than computers. They can 
replicate autonomously, generate their 
own energy, repair themselves, manufac-
ture and recycle the substances needed, 
produce their processing hardware, 
and interact dynamically to provide 
emergent behaviors, even committing 
suicide (apoptosis) when necessary 
for the common good. An inheritable, 
error-free source code program to cover 
all these details and eventualities would 
not be feasible. Instead, cells replicate 
only the variables and their values, plus 
a functional copy of the necessary hard-
ware each generation.

This strategy provides less opportu-
nity for information corruption com-
pared to specifying all the steps in precise 
detail in order to assemble thousands 
of cellular components, test the timing 
of location and progress of activity, and 
then mandate corrective action to take. 
We complete the explanation in Part 

2 by showing how judicious organiza-
tion—and inheritance—of the hardware 
components provide informative con-
tributions and thereby reduce what the 
software needs to communicate.

Francis Crick was wrong when he 
claimed the genome was the (sole) 
source of phenotypic information 
(Crick, 1970). We can show this in 
many ways. A consequence of RNA 
editing, trans-splicing, and other post-
transcriptional RNA modifications 
is that the modified sequences can 
undergo reverse-transcription and be 
introduced into the DNA germ line 
(Moller-Krull et al., 2008). Furthermore, 
changes in chromatin (which do not 
alter DNA sequences) can be inherited 
later over multiple generations (Jaenisch 
and Bird, 2003). In fact, somatically 
heritable chromatin structures are one 
way to establish differentiated cell lines 
(Gurdon et al., 2003). Further evidence 
that DNA does not directly prescribe 
final outcomes includes the existence of 
multiple life stages such as invertebrates 
having distinct larval and adult stages 
and other examples of metamorphosis. 
In the next paper, which accompanies 
this one, we describe the cell as an in-
teracting set of controlling subsystems, 
each with its own coded variables, and 
less as a hierarchical or cascading design.

Much of what is necessary in the cell 
is not directly guided by DNA (Barbieri, 
2003, p. 31). Globular proteins work 
only after they fold properly, which is 
affected by factors such as fluidity of the 
environment, how fast different sections 
are translated in a ribosome (Spencer 
et al., 2012), and the contribution of 
chaperones. Even after proteins form, 
additional guidance is provided, not 
by DNA, but by ligands, which are ju-
diciously attached and removed. Gene 
regulatory networks develop automati-
cally upon activating/deactivating CREs 
that are passively poised in anticipation. 
If one or more TFs activate a particular 
CRE, the resulting protein (a new TF) 
can activate or deactivate the same or 

different CRE(s), eventually leading 
automatically to mutually interacting 
circuits with no a priori guidance from 
explicit coded instructions.

RNAs can also behave as informa-
tive riboswitches. A small molecule 
binds to part of the RNA (the aptamer), 
which causes an allosteric change in 
another portion of the RNA called the 
expression platform, which can regulate 
gene expression (Serganov and Patel, 
2007). There are many more examples 
of information processing that do not 
involve exclusive and direct guidance 
by DNA, such as aggregation of surface 
receptors in response to ligands (Wulfing 
et al., 2002; Bray and Duke, 2004; Murai 
and Pasquale, 2004) and cytoskeletal 
reorganization (Pollard and Borisy, 2003; 
Pelkmans, 2005).

There are cases, or course, where 
outcomes are partially specified directly 
by DNA, such as the N-end rule, where-
by the half-life of proteins is determined 
to a large extent by the identity of its 
N-terminal residue. Sometimes DNA 
provides parameters less obviously such 
as in protein and vesicle targeting to 
distinct cellular locations (Bonifacino 
and Glick, 2004; Pool, 2005) and pro-
tein export from cells (Neel et al., 2005; 
Stuart and Ezekowitz, 2005). Here the 
signal sequences are extremely variable, 
both in length and amino acid composi-
tion, and the parameters are generated 
sometimes by remote parts of proteins 
brought together only after folding. This 
variability could be necessary for various 
processing details including additional 
post-targeting functions (Hegde and 
Bernstein, 2006; Emanuelsson, 2002; 
http://psort.hgc.jp/).

Evolutionists have generally argued 
that mutations are all that is needed to 
explain current cells. Distinguished 
Oxford professor Denis Noble, a force-
ful critic of Dawkins’ reductionist views, 
pointed out that this is too simplistic: 

“Neo-Darwinism also privileges ‘genes’ 
in causation, whereas in multi-way 
networks of interactions there can be 



Volume 52, Spring 2016	 279

no privileged cause” (Noble, 2015 p. 1).
Does DNA determine outcomes by 

already possessing the necessary instruc-
tions, or does it respond to signals from 
the cell (e.g., to replace proteins decided 
by the cell are needed)? We agree with 
Noble, who also wrote, “The causality 
is circular, acting both ways: passive 
causality by DNA sequences acting as 
otherwise inert templates, and active 
causality by the functional networks of 
interactions that determine how the ge-
nome is activated” (2015, p. 9) and that 

“IF-THEN-ELSE” type instructions are 
found in cells (p. 10). 

An interesting consideration is where 
most of the decision making occurs in 
computers and cells (Figure 2). This 
issue arises in all sender-receiver forms 
of communication. In some cases, a 
message could provide very detailed 
instructions, and in other cases the mes-
sage is (explicitly) minimally informative. 
When only variable values are commu-
nicated, sometimes the sender performs 
considerable logical preprocessing and 
then only provides what is relevant 
(which the receiver can easily process). 
In other cases, raw data are made avail-
able, and the receiver is responsible to 
make sense out of it.

In the first example, we will consider, 
the sender has performed most the im-
portant logic processing before sending 
the following coded data (2):

(Co=’IBM’; Nr_stocks_
to_buy=510; When_to_
buy=’16 o’clock CET’)	  
	 (2)

The receiver now knows what to do 
(which stocks to buy, how many, and 
when). Considerable decision making 
occurs in cells in the sender environ-
ment before the concentration and 
location of TFs are specified, and the 
results are communicated and processed 
as variable values by the relevant CREs 
variables at the receiving side.

In the next example, the receiver 
must perform much deductive process-
ing, since variable values are commu-
nicated whose significance need to be 
interpreted and evaluated (3):

(Co=’IBM’; Stock_
change_in_price=0.1; 
Weather=’cloudy’; 
Winner=’Manchester 
United’)	 (3)

The receiver must now determine 
what is relevant and how it correlates 
with the decisions to be made. Human 
minds typically process raw data consid-
erably before making a decision.

What Is a Code?
What is a code, and how does it relates 
to logic processing using variables? A 
code defines rules that translate physical 
or mental details—such as sounds, im-

ages, pressure, size, quantity, intention, 
or even a different code—between two 
independent systems using an agreed-
upon abstract convention of symbols. 
Speaking and writing are examples, 
bridging gaps in location and time. A 
simple causal outcome based on only a 
mechanical effect does not use a code, 
so an axe blow does not split a log in two 
thanks to a code that communicates in-
tention. Whether to swing an axe could 
be communicated, however, using an 
arbitrary symbol convention such as 
{thumbs up /thumbs down}, {0 / 1} or 
{oui / non}. 

The sender and receiver can share 
the same symbol set (alphabet), like the 
International Flag Code for merchant 
ships and the use of ‘Co’ in (2) and (3) 
above. An example in cells is when a 
specific TF (sender value) interacts di-
rectly with a CRE (generating a receiver 
value). Another example is when a DNA 
template is used to generate DNA copies. 
The next nucleotide value to add to the 
growing chain is communicated directly.

Alternatively, the sender and receiver 
could use different alphabets and vari-
ables as long as there is an unambiguous 
way to map the symbol sets. In (2) above, 
the receiver could assign the value for 

“Co” to its own variable “Company” and 
also convert the time 16 o’clock accord-
ing to its own time zone. This kind of 
linkage may require adaptor molecules 

Figure 2. Logic processing can occur by the sender before communicating coded data and after the receiver knows what 
should be done. Sometimes little or no reasoning is needed to generate the sender’s data, such as photons landing on retinas, 
and thereafter complex logic must be executed by the receiver to extract benefit from the data and decide what is to be done.
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(Figure 3) or messenger molecules in 
cells.

If an informative ligand attaches to 
a TF, which then links to a CRE, this 
TF is now playing the role of an adaptor 
molecule. Another example of adaptor 
molecules are tRNAs in the genetic 
code, where one end identifies a specific 
mRNA codon (the value), and the other 
end translates to a corresponding receiv-
er value (which activated amino acid to 
add to the growing protein). Linking the 
two systems through a chained network 
of signals permits additional factors to 
be taken into account that could refine 
the details during transfer.

Additional variables can be used 
within the sender and the receiver side 

to perform necessary reasoning. These 
can be independent codes, but at their 
interface there must always be pre-
agreed conventions with respect to the 
meaning of the variables and how values 
are communicated. A receiver could 
then process the values assigned to its 
internal variables and then become a 
new sender, transmitting values to a new 
receiver. A chain of sender/receivers can 
result, and examples in cells include 
signal cascades.

Multiple Codes  
Are Used in Cells

Gordon Tomkins may have been the 
first scientist to propose that the genetic 
code is not the only code used in biology 

(Tomkins, 1975). Cell needs are com-
municated by different codes found on 
DNA, RNA, proteins, filaments, sugars, 
cell membranes, and other cellular 
components. Occasionally the literature 
seems to incorrectly claim a code is 
involved, such as the so-called protein 
folding code (Dill et al., 2008), in which 
multiple local activities occur in a pre-
cise order as part of the folding process. 
The difficulty in this case is identifying 
abstract variables upon which Boolean 
logic is performed. In this example, 
it seems that only physical chemical 
forces are occurring in a continuous and 
time-ordered set of steps. No variables 
are waiting to be assigned values nor 
anticipate activation.

Each code has its’ own language and 
symbols. The genetic code to specify 
protein sequences is independent of the 
DNA-binding protein code to regulate 
gene expression (Hughes, 2008; Jolma et 
al., 2015) (Figure 4), even though both 
use DNA, and DNA codes sometimes 
share overlapping DNA nucleotides.

Entire collections of CREs can be 
organized into cis-regulatory modules 
(CRMs), leading to DNA code variants, 
since each CRM uses a separate set of 
rules. Figure 5 shows a representative 
example, where three exon are regulated 
by five such CRMs (Davidson, 2006, p. 
49). Depending on time (e.g., develop-
ment stage), input signals, and cell lin-
eage, different modules can be used to 
interact with the key “proximal module” 
nearest to the transcription apparatus. 
This is a clear example of Boolean logic 
being applied.

In addition, by using different read-
ing frames, the same code sometimes 
provides different messages. This was 
examined in mathematical detail for the 
genetic code at a recent conference on 
biological information (Montañez et al., 
2013, pp. 139–167). In a remarkably can-
did paper, we read that “although dual 
coding is nearly impossible by chance, 
a number of human transcripts contain 
overlapping coding regions” (Chung et 

Figure 3. Communication between a sender and receiver system corresponds to 
transferring values to receiver variables. The alphabet of the sender (dark symbol 
in leftmost column) can differ from that of the receiver (dark symbol in rightmost 
column). In cells one or more adaptor molecule (middle column) may be needed 
to translate values between sender and receiver variables. The correct adaptor is 
identified through physical linkage with the sender variable’s value.

A. 1:1 mapping between sender and receiver variable.  
B. 1:n mapping.  
C. n:1 mapping.
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al., 2007). These multiple codes prompt-
ed Trifonov to point out, “The times of 
surrender to ‘junk’ and ‘selfish DNA’ 
are over, and ‘non-coding’ becomes a 
misnomer” (Trifonov, 2011, p. 2). 

We will not attempt an exhaustive 
listing of all cellular codes at this time, 
and the DECODE program continues 
to bring new ones to light, but we will 
mention a few to demonstrate that cel-
lular codes define variables and their val-
ues but not procedural code as humanly 
readable instructions.

There is a tRNA charging code 
without which the genetic code cannot 
be implemented (Hou and Schimmel, 
1988; Trifonov, 2011).

The histone code (Young, 2001; Jen-
uwein and Allis, 2001; Strahl and Allis, 
2000; Cosgrove and Wolberger, 2005) 
involves post-translational modifications 
such as ubiquitination, phosphorylation, 
mono-, di-, tri-methylation, acetyla-
tion, sumoylation, and biotinylation of 
various residues on the four histones 
proteins (H2A, H2B, H3, and H4) that 
form the nucleosome. These tags regu-
late gene expression and other processes. 
Specific histone modifications can iden-
tify the need for DNA mismatch repair, 
for example H3K36me3 (histone H3, 
lycine number 36 receives three methyl 
groups) (Schmidt and Jackson, 2013) 
and H3K56 acetylation (Kadyrova et 
al., 2013). Hypoacetylation of H3K56 

by enzymes HDACs 1 and 2 facilitate 
recruitment of nonhomologous end-
joining (NHEJ) proteins (Miller et al., 
2010). One should not overlook that 

each cell type in eukaryotes uses its own 
histone code (Carey, 2012, p. 188).

DNA methylation at the correct 
location identifies which sections of 

Figure 4. Representative example of cis-regulatory logic, showing the 2300 base-pair region preceding the coding region 
of gene endo16 of sea urchin. One or more proteins can bind to each of the cis-regulatory elements (gray boxes). The let-
ters identify regions used for different purposes, such as regulation of key tissues during different phases of development 
(Davidson, 2006, p. 49–51).

Figure 5. Multiple cis-regulator modules (CRMs) per gene, each composed of 
several CREs, permit independent regulation according to time, input signals 
and cell lineage. This typical example shows three exons (gray-checked boxes) 
regulated by five CRMs (black boxes). The CRMs are about 400 bp long, and 
the gene plus regulatory regions are spread out over about 30 kb of DNA. Alterna-
tive looping brings the relevant regions together (Davidson, 2006, p. 49). A: The 
“proximal module” 3 interacts with CRM 5; in B it interacts with CRM 1, and 
in C it interacts with CRM 2.
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DNA should be transcriptionally active 
euchromatin or inactive heterochroma-
tin (Bird, 2002).

The tubulin code involves various 
ligands that are added and removed to 
microtubules to affect several cellular 
processes (Verhey and Gaertig, 2007; 
Janke, 2014).

The splicing code of eukaryote 
pre-mRNAs permits different exons to 
be combined to produce alternative 
proteins (Tejedor and Valcárcel, 2010).

The nucleosome positioning codes, 
also called “Chambon rules” (Barash et 
al., 2010), are understood well enough 
to algorithmically automate their loca-
tion to within one base for biological 
DNA sequences (Segal et al., 2006; 
Trifonov, 1980; Trifonov, 1981; Gab-
dank et al., 2010). During development 
eukaryote genes are activated in a timed 
based manner using these codes for each 
primary transcript (Segal et al., 2006) 
to establish a regulatory circuitry that 
controls which genes are activated or 
silenced (Yuh et al. 1998). 

Interaction between genes has also 
revealed the Hox Code. Just a few Hox 
or homeotic genes control development 
of the body plan along the anterior-
posterior axis. They code for transcrip-
tion factors, which can either activate or 
repress large gene networks. The same 
transcription factor can repress one 
gene and activate a different one, and 
TFs are involved at many levels within 
developmental processes (Wellik, 2007). 
A typical regulatory region in eukaryote 
DNA is about 500 nucleotides long, on 
which four or five transcription factors 
can bind. On average eukaryote genes 
seem to have about three such regulatory 
regions (Bray, 2009, p. 191).

The N-end code regulates the half-
life of a protein using the identity of its 
N-terminal residue, which is determined 
from the moment they are produced 
(Varshavsky, 2011; Gibbs et al., 2014).

In the sugar code, oligomers of 
carbohydrates serve as ligands for the 
transfer of information, acting with 

lectin protein receptors (Gabius et al., 
2011; Murphy et al. 2013). The large 
number of hydroxyl groups available 
offers enormous storage capacity, vastly 
more than the genetic code could (An-
dré et al., 2015).

The adhesive code (Readies and 
Takeichi, 1996; Shapiro and Colman, 
1999) uses differences in adhesiveness 
between neural cells in the primordial 
neuroepithelium to first establish seg-
mentation and then the emergence 
of specialized structures such as brain 
nuclei, cortical layers, fiber tracts, and 
neural circuits using cadherins.

A niche code has been proposed 
(Forsberg and Smith-Berdan, 2009). 
Hematopoietic stem cells (HSCs) must 
generate daughter HSCs and a variety 
of mature cells in response to stress in a 
regulated manner. HSCs are found in 
specialized niches in bone marrow, and 
there is a regulated adhesive interaction 
between niche cells and HSC compo-
nents such as integrin, another example 
of adaptor molecules.

Signal Transduction Codes are 
used when extracellular signals (“first 
messengers” such as hormones, neu-
rotransmitters, and paracrine/autocrine 
agents) attach to a specific receptor on 
the cell membrane, activating a smaller 
number of second messengers such as 
calcium, cAMP, nitric oxice, and phos-
phorylation cascades (Figure 6). One 
signaling molecule can cause many re-
sponses such as the cell’s metabolism or 
gene expression, an example of 1:n vari-
able mapping mentioned in Figure 3).

There is a vast research literature 
on this topic, and resources on signal 
transduction pathways are available 
on-line in databases such as “NetPath” 
for humans (http://www.netpath.org/). 
The latest research is correcting the 
view that simple linear cascades are 
used. Instead, large networks consisting 
of hundreds or thousands of proteins are 
involved (Walhout et al., 2013, p. 93). 
Note the rich potential to interact with 
other networks and codes to dynami-

cally integrate multiple cell inputs and 
needs.

The actin cytoskeleton uses adapter 
molecules to identify materials that 
should interact there, which implies 
a cytoskeleton code (Barbieri, 2003; 
Barbieri, 2008, chapter 8).

The complex firing of neurons in the 
brain uses some kind of neural code or 
codes, since meaning is gleaned that 
permits the internal and external world 
to be understood (Nicolelis and Ribeiro, 
2006; Cessac et al., 2010; Jessell, 2000; 
Marquardt and Pfaff, 2001; Flames et 
al., 2007). In spite of intense interest, it 
is far from being understood.

A phosphorylation code in Hedge-
hog signal transduction has also been 
identified (Chen and Jiang, 2013; Ficz, 
2015; Schübeler, 2015).

The miRNA code can up or down 
regulate individual mRNA levels accord-
ing to eukaryote cell type (Carey, 2012, 
pp. 191–194).

A CpG epigenetic code in eukary-
otes governs millions of methylations 
on DNA. When near the gene start site, 
transcription is blocked but in the gene 
itself enhances expression (Jones, 2012). 
In this read/write/delete system, DNA-
methyltransferases (DNMT) add methyl 
groups, and there are many mechanisms 
to remove them in a tissue-specific man-
ner. Methylation is most dramatic in 
the brain (Keverne et al., 2015). Most 
of the methyl groups are removed in 
the fertilized egg (zygote) (Lee et al., 
2014), otherwise the next generation 
would begin with a specialized and not 
pluripotent cell.

The ventral neural tube is an 
example of special codes used in cells 
that interpret a gradient concentration. 
Distinct classes of neurons are produced 
in the ventral neural tube according to 
local concentration of Sonic Hedgehog 
(Shh) (Briscoe et al., 2000).

Many secreted and membrane 
proteins contain N-terminal signal se-
quences that communicate their target 
locations (Hegde and Bernstein, 2006).
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Codes in Cells Can Overlap
Cellular codes often overlap and there-
fore require degeneracy to not overly 
restrict each other. Since codes can be 
implemented using biochemicals which 
themselves rely on the genetic code, 
complex design tradeoffs are neces-
sary. When planned correctly, the best 
implementation must be as robust as 
possible, taking into account the sever-
ity of possible errors for all the affected 
codes (mutations, mistranslation, etc.). 

Degeneracy with respect to one 
code could be critically important for 
a different one. As an example, differ-
ent codons could represent the same 
amino acid in the genetic code, but 
each codon can specify how rapidly 
that position is translated. Figure 7 
describes this using a section of Java 
programming. 

In probably all cases, assuming 
complete degeneracy for a code would 
be a mistake. Variants of a class of CRE 

could all be recognized by the same 
TF, but the CRE sequence differences 
specify how long and often to remain 
attached, in which tissue type, the tim-
ing of activity during a cell cycle, and 
for what stages of development.

The use of multiple and overlap-
ping codes saves material and energy 
but is too constraining and requires 
too much foresight to find applicabil-
ity in general purpose programming 
by humans.

Figure 6. Example of a signal cascade pathway, here involved in programmed cell death (apoptosis). (Source of diagram: 
Wikimedia Commons, the free media repository, https://commons.wikimedia.org/wiki/File:Signal_transduction_v1.png). 
See also Klipp et al., 2009, pp. 135–142.
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Each Code Uses Its Own Processor
It is important to understand the distinc-
tion between variables and the values 
they can assume. Cellular variables 
possess recognizable steric and elec-
tronic features and wait for activation 
by a sender (which provides the values). 
For example, transcription in bacteria 
through RNA polymerase involves vari-
ables, like the “sigma factor recognizing 
promoter” (the -35 and -10 elements 
located before the beginning of the 
sequence to be transcribed). As possible 
values these locations could be unbound 
or bound to one of several possible 

“sigma factors.” The sigma factor can also 
interact with a distinct set of promoters 
(Ishihama, 2000).

For each coding system there are 
special processors designed to interpret 

the relevant values. When TFs bind to 
cis-elements to regulate translation, an 
appropriate three-dimensional proces-
sor involving many proteins must be 
organized which can include direct or 
indirect adaptors (Zhou et al., 2015). 
The hardware aspect of cellular design 
is discussed in Part 2.

Software and Hardware  
Tightly Integrated

Unlike a Turing or von Neumann 
Machine (Von Neumann architecture, 
n.d.), cells must repair themselves, 
generate their own energy, adapt to 
new challenges, and reproduce autono-
mously with all necessary components 
over many generations. The solution is 
a complete synergistic interaction be-
tween the software and hardware. The 

physical DNA, RNA, and protein-based 
components that produce the hardwired 
biochemical processes are themselves 
constructed and replaced by relying on 
data provided through preexisting DNA, 
RNA and proteins.

It is often easy to identify the physi-
cal components of cells but overlook 
informational aspects. Each 260 million 
photoreceptors on a human retina could 
be identified, but the semantic content 
implied by the photons landing on them 
is then funneled on to only 2 million 
connected ganglion cells before send-
ing to the correct processing regions of 
the central nervous system (Gazzaniga 
et al., 2009). Here information is being 
interpreted, compressed, and transferred.

As a second example, microtubules 
do much more than only maintain a 

Figure 7. Java example of codons being used for two unrelated purposes: to determine amino acid sequence and translation 
rate at that position of the mRNA.
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cell’s shape. Per microtubule a hundred 
thousand or more globular protein units 
grow in many directions and degrade 
constantly until coming into contact 
with a specialized region of a chromo-
some centromere (Sullivan et al., 2001), 
or membrane, after a signal arrives 
there, at which point a firm attachment 
prevents degradation (Kirschner and 
Gerhart, 2005, pp. 148–152). These at-
tachment regions are sensors (variables) 
that assume a value (i.e., when activated 
by the tip of the microtubule), that 
recruits proteins to produce a decoding 
molecular machine.

Logic Processing Is  
Distributed and Hierarchical

Different prokaryote species form eco-
logical systems with necessary genes 
distributed among the members (Sonea 
and Mathieu, 2001), which is why a 
particular function requiring several 
genes can be assembled in one member 
through horizontal DNA transfer. Plas-
mids in prokaryotes are another example 
of distributed information processing. 
In eukaryotes, information processing 
is also distributed, such as when bac-
teria digest food separately from the 
host organisms’ germ line. Different 
cell lineages also distribute the effort, 
where each cell type has characteristic 
ensembles of activated and deactivated 
genes. Proteins, polysaccharides, lipids, 
and other substances are used to interact 
with receptors on cell surfaces and pro-
vide communication signals to convey 
metabolic and developmental status 
back and forth (Aricescu and Jones, 
2007; Takada et al., 2007; Yamada and 
Nelson, 2007; Widelitz, 2005). Inter-
cellular communication also occurs by 
molecular diffusion through air or water 
using gases, amino acids, oligopeptides 
and vitamins as signals (Bogdan, 2001; 
Chen et al., 2005; Fuqua et al., 2001; 
Chambon, 1995; Lazazzera, 2001).

Hierarchical information process-
ing also occurs. As examples, low-level 
logic processing occurs when individual 

DNA nucleotides define individual RNA 
nucleotides, and when codons specify 
amino acids. Once a protein has formed, 
additional processing occurs to transfer 
it to the correct cell location, later to 
integrate into molecular machines, 
enzymatic networks, and metabolic 
networks. Thereafter ever more complex 
features can develop, such as entire 
eukaryote organelles which themselves 
become part of a properly regulated cell, 
on up to organs, whose operations must 
also be carefully regulated to permit a 
viable organism that interacts within 
an ecology.

In addition to such hierarchical 
integration, we will see in the accompa-
nying paper that many control systems 
in cells—each with their own codes—in-
teract mutually within what often seems 
to be the same hierarchical level.

Generic Insights from 
Computer Systems 

Architecture
The explosive development of computer 
technologies is the result of collabora-
tion between millions of scientists, en-
gineers, and mathematicians worldwide. 
Fundamental to this success are interop-
erability conventions and standards 
(such as the Open Systems Interconnec-
tion model). This permits specialists in 
various hardware and software areas to 
focus on and develop technologies from 
which integrated systems result. Using 
these design insights, we will interpret 
cellular behavior by examining software 
and hardware aspects individually and 
consider different levels in the system 
at which guidance is provided.

Another insight humans have gained 
is the design of subsystems that can be 
assembled. We discussed lateral and hi-
erarchical logic processing above (Than-
bichler and Shapiro, 2008; Schneider 
and Grosschedl, 2007). An external 
printer can be built separately and then 
linked to the rest of the system. To work 
properly the hardware devices often also 

require their own dedicated software 
(e.g., “drivers” must be installed).

Software Elements Used to 
Implement Processing Logic

Before examining software constructs 
used by computers and cells, let us con-
sider a simple program to calculate the 
factorial of a number (Figure 8). 

Several general principles can be 
discerned.
1. 	 The programmer did not need to 

consider how the solution would 
be implemented on hardware nor 
the operating system details. Only 
the logic needs to be accurately 
expressed symbolically.

2. 	 There is a language with a precise 
grammar that contains several 
generic constructs—for example, 
iteration (with a defined starting and 
finishing value) and a Boolean test (if 
i has a value of n or less, then add 1 
and continue, otherwise terminate 
the iteration).

3. 	 The same processing logic could 
be applied with different values and 
meanings for the variable n.

4. 	 The algorithm could be copied into 
other programs and modified.

5. 	 The variables belong to a specific 
data type and have properties con-
sistent with them. In the example, 
i and n must have an integer value: 
one cannot assign a value of “Smith” 
nor “True” to them.

6. 	 The variables can represent real ob-
jects, like dollar bills, but the choice 
of the symbols and what they do are 
physically independent of what they 
specify.

7. 	 The algorithm continues to make 
sense if each variable is replaced 
by another unique symbol. Even a 
three-dimensional abstract symbol 
could be used and the values as-
signed could also be represented by 
no code currently in use by comput-
ers. However, changes in hardware 
would then become necessary.
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8. 	 To have any value, the outcome from 
the algorithm needs to be retained 
or have some kind of effect.
All these and other principles can 

also be identified in cellular information 
processing. In the example in Figure 
8, we see how limitless cases could be 
solved by merely replacing the numbers 
i and n as needed. This works only if 
programming constructs such as itera-
tion, assignment of values to variables, 
and so on, exist. Otherwise a unique 
mechanical arrangement would be 
needed to solve each example. It is this 
use of general-purpose symbolic logic, 
which can be mapped to mental or 
physical objects, that is so special about 
computers and cells.

After this long, but necessary, prepa-
ration, we are finally ready to examine 
three important topics in the art of 
designing software: generic software 
data structures; generic programming 
elements; and file formatting. These are 
fundamental for computers.

I. Generic Software Data Structures. 
Let us examine how data is usually 
structured in modern computers and 
cells to facilitate use in general-purpose 

programming constructs discussed in 
section II.

Symbols in an alphabet
Codes rely on an alphabet of elementary 
symbols. Modern digital computers use 
an alphabet of two symbols {0, 1} called 
bits. Cells use dozens of alphabets for 
their many codes. DNA is composed of 
four nucleotides abbreviated {A, C, G, 
T}, RNA also uses four nucleotides {A, 
C, G, U}, other codes rely on small ions 
such as cAMP (Ashcroft, 1997; Krysko 
et al., 2005) and calcium (Wagner et 
al., 2015), or on small parts of larger 
molecules.

One or several symbols taken jointly 
define an item, field, constant, variable, 
or value. In the past, telegraph messages 
used 5-letter commercial coded values 
such as BYOXO (“Are you trying to wea-
sel out of our deal?”) and LIOUY (“Why 
do you not answer my question?”). 
Other conventions also exist, such as 
LOL (“Laughing Out Loud”) and CU 
(“See You”). In the extended ascii ISO 
8859–1 code, ‘00001001’ represents a 
Line Feed, ‘01000001’ represents the 
letter A, and ‘00111000’ represents the 
decimal digit 8. The codeword length 

of values can be fixed as in the asci 
extended and the genetic code or have 
different lengths as in compressed codes 
to store and transmit electronic data 
(Togneri and deSilva, 2003). There 
are design trade-offs to consider when 
deciding whether to use a fixed or vari-
able length (Truman, 2012).

The symbols used by computer 
programs must be exact to be processed. 
Confirmation and Conformation are 
almost identical, but not the same.

Different codes can be linked us-
ing different alphabets. A sender code 
could be restricted to a symbol from, e.g., 
{green, yellow, red}, which the receiver 
could translate to its system, e.g., limited 
to {1, 2, 3}. 

When large molecules are used to 
convey coded meaning in cells, typically 
a small portion is informative, and the 
rest plays an adaptor molecule role or 
is used for the implementation details. 
Consider proteins. Portions of differ-
ent residues are integrated to define 
a joint “symbol” having unique steric 
and electronic properties. The result-
ing symbols must be decoded using 
three-dimensional processors. In the 
fluid environment of cells under vary-
ing temperatures, the decoders must be 
more flexible than in computers. One 
consequence is that a portion of differ-
ent amino acids could be combined to 
produce functionally the same symbol 
meaning in three dimensions.

Data types
Modern computer languages enforce 
data typing, which defines the kinds of 
values that can be assigned to variables to 
prevent errors. Common types include 
integer, floating-point number, charac-
ter, alphanumeric string, and Boolean. 
Each kind of variable for biological 
codes is restricted to a range of values. 
The genetic code uses DNA and mRNA 
codons, whereas the enzyme complexes 
used by the histone code do not process 
codons (http://www.cellsignal.com/
contents/resources-reference-tables/

Figure 8. Programming using Java to calculate the factorial of a number to il-
lustrate the use of common software constructs to solve problems independent 
of the hardware implementation.
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histone-modification-table/science-
tables-histone).

As another example, many mRNAs 
can interact with only some miRNAs 
(which specify what is to occur to the 
mRNA; Verdel et al., 2009; Sugiyama et 
al., 2005). This corresponds to 1:n, n:1, 
or n:m variable binding in Figure 3. In 
addition, only certain noncoding RNA 
data types (specific siRNAs, piRNAs, Alu 
RNAs etc.) are recognized by mRNA 
binding proteins.

Data type subsets
A subset of a data type can also be estab-
lished for a specific program or module 
to further narrow acceptable values 
in some programming context—for 
example, only certain acceptable city 
codes for telephone numbers in a city, 
or a list of alphanumeric identifiers for a 
product line. We find this principle also 
in cells. The codons to represent Ala-
nine must come from the subset {GCU, 
GCC, GCA, GCG} and Arginine from 
{CGU, CGC, CGA, CGG, AGA, AGG}.

Operation are defined  
for each data type

Specific computing methods or opera-
tions are permitted for each data type 
(and also for complex structures like 
matrices, arrays, etc.). One can negate 
a Boolean variable to convert True into 
False, but negating a data type “charac-
ter” makes no sense. String variables can 
be concatenated, for example phrase = 

“white” + “ ” + “house” to form “white 
house,” but this won’t work for variables 
such as integers.

This principle is also found in cells. 
Each code used with DNA, RNA, pro-
teins, sugars, or membranes is limited 
to its variable type(s) and their allowed 
operations. Consider the processing 
operations that can be performed with 
mRNA’s data type “codon.” The values 
can be read at the A (acceptor) or E 
(exit) portion of ribosomes (the receiver 
variables), they can be “concatenated” 
on each side to form polymers, and 

they can base pairs in unique ways (A-T 
and C-G). These kinds of operations 
cannot be assumed for other data types, 
such as hormones, transcription factors, 
or neurotransmitters. Ribonucleases 
and restriction enzymes can cut DNA 
strands using a subset of acceptable pat-
terns (the receiver variable), but these 
locations are not processed on a codon 
basis as the genetic code does.

Group item 
Elementary fields or items in computer 
languages can store values long-term 
using compound symbols. In many 
programming languages, several el-
ementary items can also be combined 
and processed jointly for read and write 
purposes. As an example, a group item 

“address” could be composed of elemen-
tary items “house-number,” “street,” 

“city,” and “country-code.” Additional 
hierarchical clustering is also used in 
computer languages (such as C, Pascal, 
and Cobol), meaning group items can 
be further combined into records for 
example. This principle is also found 
in data transfer conventions like XML.

In cells, we recognize this principle 
whenever elements containing substruc-
tures are processed as a complete entity. 
One example is telomeres at the end 
of chromosomes, composed of groups 
of repetitive nucleotide patterns (e.g., 
TTAGGG in vertebrates), which are 
replenished by the enzyme telomerase 
reverse transcriptase. The six individual 
nucleotides are processed as an en-
semble. In S. cerevisiae, each C1–3A/
TG1–3 repeat, taken jointly, constitute a 
potential binding site for Rap1 proteins, 
which recruit additional proteins (Wil-
liams et al, 2010).

In mammals, shelterin protein com-
plexes regulate telomerase activity. Two 
of the six subunits (TRF1 and TRF1) 
bind uniquely to individual double-
stranded TTAGGG (de Lange, 2010). 
So once again we recognize the concept 
of a grouping of elementary components. 
At a higher level, multiple copies of the 

individual patterns are treated as a new 
grouped entity and added all together to 
a chromosome by TERT (TElomerase 
Reverse Transcriptases) using a piece of 
template RNA known as TERC (Jády et 
al, 2006).

Group items consisting of smaller 
group items are not limited to repetitive 
patterns. Multiple codons are placed 
together within exons, which them-
selves are integrated into a primary 
RNA transcript. Processing as a whole 
occurs, such as in retrotranscription 
and rearrangements with the help of 
transposable elements.

The concept of group processing 
reminds us of how several residues 
jointly lead to discrete motifs in folded 
proteins and how a larger numbers of 
residues work together to form secondary 
structures such as alpha helices and beta 
sheets. Different nucleotide combina-
tions also produce special RNA motifs.

Microbial genomes are also known 
to have an operon-like organization at 
various scalar levels (Audit and Ouzonis, 
2003).

Concatenated index
In relational databases such as Oracle, 
a unique combination of one or more 
index values can be used to identify data 
records. Similarly, multiple nucleotides 
define promotors to identify the location 
of genes.

Array
Arrays and linked lists contain a series of 
values. In arrays, values of some datatype 
are stored in numerically indexed posi-
tions. The position within the array is 
informative and can be used directly in 
programming logic. If a certain value is 
always located at a specific index posi-
tion (or a limited range of positions es-
tablished in advance), it can be accessed 
directly by processing logic. An example 
using Fortran (a language well-suited to 
matrix calculations) is shown below (4). 
Assume that the results of a student’s dif-
ferent exams are stored in known index 
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positions of array Examresults, and index 
position 3 contains the points obtained 
for the math test. The programing logic 
might look like this:

IF (Examresults(3) .GE. 
70 .AND. Examresults(3) 
.LT. 85) THEN Mathgrade 
= ‘B’	 (4)

Highly relevant to our discussion 
about cells, the value of interest could 
in principle be stored in different array 
positions if the acceptable alternatives 
are established in advance. Suppose 
there were two examiners and the result 
if determined by the first one is stored 
in Examresults(20) and if by the second 
examiner in Examresults(21). Now the 
program must determine the test results 
for the math exam by looking up the 
contents of array positions 20 and 21 and 
select the one having the exam result.

Prokaryote promotors illustrate ar-
ray data storage and processing. For the 
Pribnow Box, a six-nucleotide consensus 
TATAAT is used by E. coli, centered at 
the -10 position, and often a second pat-
tern TTGACA centered at -31 (Figure 
9). For some bacteria or genes, the ar-
ray positions to check could be slightly 

shifted, but legitimate indexed positions 
to be tested are known in advance. We 
will not elaborate here on the reasons for 
using alternative array positions, but it 
could be to regulate transcription rates or 
the results of genomic rearrangements.

There are many more examples 
of array processing in cells. In a typi-
cal ca. 22-nucleotide miRNA, usually 
only 6–8 adjacent or almost adjacent 
nucleotides (the seed region) at the 5’ 
end are relevant, which is also true of 
the corresponding receiver variable on 
an mRNA. Logical tests on candidate 
miRNAs and their binding sites can 
therefore be performed using array index 
values. As another example, the coding 
parts of DNA and mRNA specify amino 
acid sequences, and the nucleotides 
need to be processed as triplets with no 
frameshifts. This permits translation to 
read the codons located in sequential 
index positions along mRNAs. In other 
words, each array index position does not 
contain a nucleotide, but a codon. Once 
the mature mRNA is ready for transla-
tion the length remains fixed, another 
characteristic of arrays.

Additional examples of processing 
array data include the symbols used by 

mobile elements to recognize insertion 
motifs; the portions of folded TFs that 
recognize cis-regulatory combinations; 
and the portions of enzymes that recog-
nize restriction sites.

We see why many proteins must fold 
reliably into the same three-dimensional 
structure. This brings the relevant 
elementary symbols together so each 
can be assigned to a three-dimension 
index, “protein_position[i,j,k].” The 
relevant array positions refer to location 
in three-dimensional space and not the 
primary protein sequence. The resulting 
symbols need to be defined well enough 
to permit variables and their values to 
recognize each other, synergistically 
molding themselves together and avoid-
ing false positives.

Whenever for a DNA or RNA-based 
code the distance between key nucleo-
tide patterns are exactly or almost exactly 
known (including epigenetically modi-
fied nucleotides), then an indexed array 
seems to be a better description than a 
linked list. Knowing index values allows 
other array positions to be skipped and 
ignored. This is physically implemented 
in cells by constraining the decoders 
(e.g., portions of proteins) to specific 

Figure 9. Nucleotide patterns at specific locations in bacteria define consensus promoter elements. The Pribnow box is 
centered at the -10, and a second component is often found at the -35 nucleotide position upstream from the start of tran-
scription. Other regulatory elements are sometimes centered at the -41 or -61 position. If each nucleotide in the regulatory 
region is stored in an array, the index position can be used to program logical tests.
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ranges of distance and location between 
the relevant data elements. (In the case 
of linked lists, however, a more compli-
cated search for the relevant variables 
must be implemented).

We suggest below that DNA rep-
lication and transcription processing, 
which are used by different codes than 
those just discussed, are based not on 
arrays but linked lists. There are subtle 
differences between these kinds of data 
structures. For example, in computers 
the length of an array is established 
when the array is created (unlike linked 
lists, which grow and shrink as needed). 
Remarkably, in cells the same nucleo-
tides are sometimes used by different 
codes concurrently, each with different 
kinds of data structures.

Linked List 
A linked list is a chain of data and link 
values. The data part contains the useful 
information, and the link has the address 
of the next or previous element. Single-
linked lists only point to the address of 
the next element, whereas double-linked 
lists include pointers to the next and the 
preceding data location (Figure 10).

 Either an array or linked list could 
be used for programming purposes. They 

do differ, however, in internal imple-
mentation in ways that affect execution 
speed of data insertion, deletion, updat-
ing, and searching. One difference is 
that the index value where specific data 
is located in array lists is generally not 
known in advance and can change. Un-
like arrays, linked lists can automatically 
grow and shrink dynamically as needed.

To illustrate the difference, candi-
date CRMs that could interact with the 
proximal module to regulate a gene 
are separated by distances that can vary 
(Figure 5). Finding the activated CRM 
requires a search for relevant data sym-
bols whose positions are not defined 
by unique index values. An additional 
complication is that the regions of the 
CRM that are to bind to the proximal 
module involve CREs whose positions 
are not static in three dimension and 
must also be searched for.

The same reasoning applies when 
spliceosomes identify variable intron 
content whose boundary is defined by 
splicing signals (Rino and Carmo-Fon-
seca, 2009). The introns are generally 
not identifiable a priori by fixed index 
positions and the spliceosome succeeds 
even if transcription error adds or elimi-
nates nucleotides.

In linked lists, elements of a defined 
data type (which could be a complex 
group of different item types) can be 
added to the end, inserted at any posi-
tion, modified or removed (for arrays 
also, but that requires more processing 
effort). In addition, another linked list 
can be added on to another at any posi-
tion. One disadvantage, of course, is that 
more effort is required to find a specific 
value compared to when its indexed 
location is known in advance.

In RNA, the four nucleotides {A, 
C, G, U} are attached to riboses (and 
deoxyriboses for DNA), which are held 
together along the backbone by phos-
phate groups (Figure 11). 

Analogous to linked lists, nucleotides 
can easily be added, removed, or in-
serted simply by breaking and reattach-
ing “address pointers,” here phosphate 
bonds. This is an excellent description 
of what happens when DNA chains 
replicate one base after the other, RNA is 
transcribed, introns are removed, exons 
are spliced together, and chromosome 
crossover occurs. Absolute index values 
per se are generally not relevant for the 
logic processing, unlike for arrays.

We summarize in Table I some of 
the built-in methods available to linked 
lists, using the Java language (https://
docs.oracle.com/javase/7/docs/api/java/
util/ArrayList.html) and include some 
examples from cells.

In many cases, the processing could 
be defined in terms of linked lists and/or 
arrays. Let us recall miRNAs and take 
into account the concept of sublists, or 
relative indices, mentioned in Table I. 
In processing step 1, the nucleotides of 
a candidate miRNA could be assigned 
to a sequential linked list. In processing 
step 2, sliding windows 6–10 nucleo-
tides long (representing candidate seed 
regions) could be fed into a fixed-length 
array. The values in array position[0] 

… position[9] would then be system-
atically tested against possible acceptor 
variables in mRNAs. Multiple hits are 
allowed.

Figure 10. Linked lists and arrays. A. Double linked lists contain data (non-shaded 
boxes) and links (gray boxes), which point to the preceding and next member of 
the array. B. Arrays contain data at static locations identified by index values.
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Variables as a Data Structure? 
We mentioned that in programming, 
arrays and linked lists are used to store 
data values. These can be assigned to a 
variable. For example, for an employee 
stored in index position 45 we might 
have a line of programming such as: 
SalaryInDollars = SalaryInPesos(45) * 
1.4, and there is no ambiguity in how 
the value assignment occurs, nor in what 
was assigned to the variable “SalaryIn-
Dollars.” Sometimes this is also true in 
cells. The anticodon of a specific tRNA 
is fixed, and the value of the commu-

nicated charged amino acid is exactly 
specified. But in cells this is not always 
that straightforward. It would be as if 
the variable SalaryInDollars could have 
small physical differences that affect 
how it interacts with the array positions, 
leading to significant effects. This issue 
can also apply to variable assignments 
that do not involve arrays and linked lists.

Unlike computers, cells often use 
variants of variables that do not respond 
identically to the same values. For ex-
ample, a CRE is like a sensor, a variable 
that can be assigned values such as “TFn 

bound” or “no TF is bound.” However, 
the binding sequence of a particular 
CRE can vary and therefore respond dif-
ferently to an identical TF (which itself 
can provide many values). This can have 
serious consequences, affecting how fast 
and long binding occurs, and could even 
affect the subsequent Boolean logic. (For 
example, a modified CRE might affect 
the geometry of the bound TF and thus 
how it interacts with other factors.)

This suggests a novel technical 
inspiration for computer scientists and 
bioinformatic researchers. Instead of 

Method Meaning

Add() Appends an element to the end or inserts at a specific position.

Cells: RNA transcription; some forms of RNA editing can insert codons (Bass, 2002; Nishikura, 2010); removing introns 
and splicing exons together; replicating DNA; chromosome cross-over.

Clear() Removes all of the elements from a list.

Cells: Upon degrading RNA all resources are free to be used for other purposes, unlike for arrays which when empty still 
consumes computer memory.

Contains() 
Get() 
IndexOf()

Returns true if this list contains the specified element. 
Returns the element at the specified position in this list. 
Returns the index of the first occurrence of the specified element.

To identify introns, a primary transcript is searched to identify where it starts and ends to identify the index values. Intron 
lengths can vary considerably. Automated algorithms, such as SplicePort (http://spliceport.cbcb.umd.edu/) and Gene-
Splice (http://ccb.jhu.edu/software/genesplicer/) reflect the logic used in eukaryote cells to identify splice sites.

The same concept is found in DNA in which transposable elements can be removed from genomes using patterns that 
define where they begin and end (van de Lagemaat, 2005).

Other examples include: the initiation codon on mRNA is searched for (and modified) and so is the region on mRNA at 
which to create polyadenylation tails; patterns on mRNA are also searched for where nucleotide posttranscription modi-
fications are to occur. The CRMs (Figure 5) are of variable distance from each other (e.g., after insertion of transposable 
elements into DNA) and need to be found. The location of elementary symbols for activated CRMs can also be variable, 
depending on what TFs are bound and which ligands these TFs contain.

Table I. Some in-built methods used with linked lists in object oriented programming languages like Java and examples 
from cell biology.
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treating members of a class of CREs 
as functionally identical or as separate 
variables—as we have been implying so 
far—the suggestion here is to develop 
a fuzzy-logic type technology which 
permits both variables and values to 
be processed with variability. Finding 
cellular variables would then also 
use linked arrays, since the candidate 
regions and length would be unknown 
in advance. The imprecision of many 
bioinformatic software tools to identify 
regulatory patterns reflects these joint 
uncertainties.

Here is an example. RNA polymerase 
and TFs search for DNA (response ele-
ments, or sensors) in 100–1000 base-pair 
regions upstream from the transcrip-
tion start site and on the same strand. 
Nucleotide positions are indexed with 
negative numbers counting back from 
-1 towards the 5’ direction. The patterns 
to test are variables that are not always 
the same in location or details, which 
is where linked lists become useful. In 
focused initiation, transcription starts at 
a single nucleotide or within a narrow 
region of several nucleotides having 

sequence motifs such as the TATA box 
and DPE. In dispersed initiation, there 
are multiple weak start sites over a broad 
region of about 50 to 100 nucleotides 
(Juven-Gershon and Kadonaga, 2010).

This suggestion captures those cases 
where symbols seem to have both variable 
and value character. The regulatory por-
tion of genes define variables that need 
data to know when and where to initiate 
transcription, but simultaneously RNA 
polymerase and TFs sometimes also 
provide variables that need data to know 
where to attach in the promoter region.

Method Meaning

RemoveAll() Removes from the list all occurrences of specific values.

Cells: Examples include tRNA splicing (Trotta et al., 1997) and RNA self-splicing (Cech, 2002) based on secondary or 
tertiary structure. These rely on discrete structures which can be stored as structured (i.e., multisymbol) values in individ-
ual linked list positions, which is a different operation than removing whatever is found between two boundary patterns. 
This assumes a specific code is to work with the linked list.

Note: Gene silencing mechanisms are not the same as physical compacting through physical removal.

RemoveRange() Removes the elements whose index is between two specified indices.

Cells: After the index location of intron/exon boundaries are found, the introns can be removed from primary transcripts.

Set() Replaces the element at positions that need to be specified with a value.

Cells: Error correction mechanisms use a DNA or RNA template; any process which modifies a DNA nucleotide (like 
methylation) or RNA codon, including RNA editing (Bass, 2002; Nishikura, 2010).

SubList() Sublist data structures are a feature of linked lists and arrays. Logic processing is 
performed with respect to the sublist and its own indices, for which the first one 
is assigned an index value 0, the second 1, etc. All operations performed on the 
sublist are reflected in the original full list.

Cells: The seed region within miRNAs. In addition, many of the examples above rely on first identifying the location of 
boundaries; what is relevant thereafter are the relative positions.

 
 
Table I (continued)
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II. Generic Programming Elements
Modern computer languages use some 
standard constructs to express what is 
to be done. Often the same logic can 
be reused, and new values only need to 
be assigned to the variables. We will dis-
cuss the main ones used to implement 
processing in computer and cellular 
programming.

Assign Values to Variables
Kirschner and Gerhart noted that in-
formation is used by cells to respond 
to changing circumstances. They wrote, 

“Two extreme views of information 
transfer have always existed in biology, 
the permissive and the instructive. The 
distinction comes up whenever there is 
a stimulus and response, or more gener-

ally a cause and an effect … Watering 
a seed provides a stimulus, but it is a 
permissive input, since no one would 
assume that the water falling on the 
seed instructs the seed how to germi-
nate into a plant” (2005, p. 125). We 
believe their intuition refers to values 
(provided by the stimulus) and variables 
(which generate a response upon pro-
cessing with the assigned value). The 
cascade of steps to be executed—after, 
for example, sensing moisture—must 
already have been prepared and an-
ticipated at the receiving end. The 
variables patiently wait until activated 
by informative signals.

Programs and subroutines use vari-
ables restricted, as we mentioned, to a 
relevant data type, to which different 

values can be assigned every time the 
program is executed. To illustrate, price, 
discnt, p, d, and newpri are variables in 
this Fortran-like programming code.

price = 100	 (5)
discnt = 5
call calc1(price, dis-
cnt)
subroutine calc1(p, d)
newpri = p - d

Values have been assigned or are cal-
culated. Here price and p have the same 
meaning, and two coding conventions 
are linked by associating a variable from 
the calling program to one used within 
the receiving subroutine calc1.

How do variables relate to the dis-
cussion on symbols, data types, subsets, 
and operations above? In computer pro-
grams, variable names and their values 
are constructed from one or more fun-
damental symbols. The variable price is 
defined by combining several symbols 
from the relevant ASCII alphabet and 
is treated as a unique entity. The symbol 
combination ecirp, however, has not 
been assigned a meaning in (5) and is 
not a valid variable in this program. The 
value 100 assigned to price is also com-
prised of several ASCII symbols, which 
taken together have a unique meaning, 
but assigning price = e34/$![ makes no 
sense, being outside the relevant data 
type. An operation newpri = TRUE / 45 
is also not legitimate, not being a valid 
operation of that datatype.

Through such precise software 
conventions, programming errors can 
be avoided and action to perform ex-
pressed unambiguously. However, if 
the semantic meaning of the variables is 
not known, the ultimate intention and 
results might never be fully understood. 
What if the source code is not available 
at all but only the executable program? 
By empirically testing variable values, 
the hidden Boolean logic can still be 
discerned in principle by the results, an 
important observation when reflecting 
on cells.

Figure 11. Structure of RNA. The four nucleotides are defined by whether the 
base A, C, G or U is attached where the R group is shown.
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How does all this work with cells? 
To understand cellular logic, one must 
identify four players: the sending coding 
system; the receiving coding system; 
and, for both, what the variables are 
and what provides their values. What 
is a variable? It is the biological recep-
tor or sensor able to assume alternative 
values (including a simple “bound”/“not 
bound” state), which, once activated 
with a value, leads to a relevant biologi-
cal response.

Variables are composed of a single 
symbol or of elementary symbols com-
bined in a unique manner (in computers 
and cells). Defining variables is neces-
sary to program intention, and cellular 
variables are identifiable by humans and 
cellular decoders.

The A site of a ribosome is a receiver 
variable (Figure 2), able to accept as val-
ues any of the 64 codons or to be empty. 
To work properly at the ribosome, not 
any codon will do. It must only accept 
the value transferred by a specific sender 
variable, which is associated with the 
relevant mRNA.

As another example, the location 
on a template DNA being currently 
processed by a DNA or RNA polymerase 
is a sender variable whose current value 
is one of the four nucleotides to be com-
municated to a polymerase decoder. 
At the end of the growing chain, part 
of the polymerase defines a receiver 
variable, which needs to know which 
nucleotide is to be added (the receiver 
value) (Figure 3).

The general pattern should now 
be clear. Special locations on sugars, 
membranes, or proteins are variables 
that can accept values (ligands or noth-
ing bound), for example, in the histone 
code. The enzymes that methylate the 
appropriate histone residue can have 
many variables of their own—used to 
first perform their own internal logic—
and then a sender variable is assigned a 
sending value, the ligand it will transfer. 
Recall that a chain of sender/receivers 
can be set up.

The discussion above may have 
suggested that only a few elementary 
symbols are used along with a handful 
of values for variables. Unlike comput-
ers, which use only elementary 0/1 “bits” 
grouped into a relatively modest number 
of unique ASCII symbols, in cells vari-
ables and their values rely on different 
and more complex alphabets for dif-
ferent codes, using many elementary 
symbols having distinct geometric and 
electronic properties.

With computers, hardware design 
is simpler and more reliable if the va-
riety of elementary symbols (bits) and 
grouped symbols like ASCII letters are 
restricted. Many of the cellular codes, 
however, must support a far more nu-
anced behavior (recall our comments on 
fuzzy variables and fuzzy values). A very 
large number of elementary symbols are 
used, each having three-dimensional 
electronic and geometric features (as 
when portions of amino acids within pro-
teins are combined in TFs). This permits 
rheostat-like or fuzzy-logic outcomes, 
which can be fine-tuned dynamically.

To illustrate, not only can different 
combinations of amino acids define the 
same kind of TF, but nearby attachments 
and physical conditions like temperature 
and salinity can affect the quantitative 
value that gets interpreted once bound to 
a CRE. Fine differences in the topology 
of the same kind of CRE—even those 
having identical nucleotides—can also 
lead to quantitative differences upon 
interacting with a seemingly identical 
TF. This is important to understand how 
codes can interact synergistically. They 
can modify the physical geometry of the 
compound symbols used by other codes.

Assign a Value to a Constant
Values of variables could change very 
often during execution of a program, 
such as the next nucleotide value to be 
processed by a polymerase. Programs 
also benefit from using constants, which 
during a relevant time period should not 
change. Implicit in cellular logic pro-

cessing are many constants, such as the 
temperature, amount of energy provided 
by an ATP molecule, which ensemble 
of genes are up- and down-regulated for 
a cell type, and genomic imprinting (in 
which certain genes are expressed in a 
parent-of-origin-specific manner).

Boolean Logic
The ability to use If-THEN-ELSE type 
logic adds immense value to program-
ming, and to understand cellular logic, 
one must identity what is the variable 
being tested and what provides its values. 
Between 5% and 10% of protein-coding 
genes in most organisms encode a TF 
(values for CREs), and these can have 
multiple binding domains. Only three 
kinds of domain are known: cold shock, 
helix-turn-helix (HTH) type 3, and HTH 
psq (Walhout et al., 2013, p. 67). Interac-
tion of only portions of a domain with a 
CRE or other biochemicals define the 
values (Figure 12).

Example (6) illustrates in program-
ming terms the kinds of logic performed.

if (CRE_1 = ‘val_1’) 
{do this}	 (6)
else if (CRE_1 = 
‘val_2’) {do something 
else}
else if (CRE_1 = 
‘val_3’) {do the follow-
ing}
else {do nothing, or 
continue what you are 
doing… whatever makes 
sense}

Checkpoint if-then logic occurs 
throughout every step of the cell cycle 
(Shapiro, 2014) checking for genome 
damage (Ishikawa et al., 2006), nutri-
tional status (Searle et al., 2011), progress 
of replication (Segurado and Tercero, 
2009), DNA replication (Putnam et al., 
2009; Nguyen et al., 2010), DNA damage 
(Huen and Chen, 2010), chromosome 
alignment on the spindle pole (Nezi and 
Musacchio, 2009; Musacchio, 2011), 
spindle orientation (Caydasi et al., 2010), 
telomere capping (Ciapponi and Cenci, 



294	 Creation Research Society Quarterly

2008), cell size (Fang et al., 2006), and 
whether the cell has accumulated the 
necessary components needed by the 
daughter cells (Sabelli et al., 2013).

Errors would lead to serious conse-
quences. Instead of genome repair in 
response to DNA damage, the if-then 
logic could lead to programmed cell 
death (apoptosis) (Tentner et al., 2012; 
Walsh and Edinger, 2010; Engelberg-
Kulka et al., 2009), using some intercell 
molecules as “death factors” (Holoch 
and Griffith, 2009) or to a decision to 
halt the cycle and initiate very sophisti-
cated repairs (Song, 2007).

Iteration
Iteration loops are often used in pro-
gramming to ensure the correct number 

of repetitions. An “infinite loop” would 
consume a computer’s—and cell’s—re-
sources and must be prevented (Figure 
13). 

Various repetitive processes occur 
in cells under the careful regulation of 
Boolean decisions: many RNA copies 
are produced from a single gene; many 
protein copies are made from a single 
mRNA; many copies of key biochemi-
cals are synthesized, such as amino acids, 
tRNAs, hormones, ATP, antibodies, etc.; 
each codon position on mRNAs must be 
processed; flagella must rotate enough 
times but not continually; tubulin copies 
are polymerized to form long microtu-
bules; enough recursive interactions 
having the right parameters must be run 
to produce steady-state genetic regula-

tory circuits; and many copies of each 
cell type are produced in eukaryotes.

There are many more examples, 
recognized whenever a cyclic behavior 
is observed having feedback control. 
Examination of molecular machines 
reveals that this is a general principle. 
Controlling iteration, defining the con-
ditions to use, when to start, and when 
to terminate, must be implemented si-
multaneous with the iterating processes. 
Runaway production would be deadly. 
Remarkably, this applies not only to the 
operation of molecular machines but 
also to the process to create the right 
number of them also, according to cur-
rent cellular need. Structuring data into 
datatypes like arrays and link facilitates 
the use of iterations in programming.

Control Structures
Programs use techniques to control 
what is to be done, when, where, how, 
and how often. In cells, we find many 
examples. We discussed iteration already. 
Boolean logic is used with the binding 
state of cis-regulatory elements (CRE) 
such as enhancers, silencers, and insula-
tors (Kolovos et al., 2012; Capelson and 
Corces, 2004) to regulate genes precisely, 
in a manner unique to each cell lineage 
(Davidson, 2006). The logic is often 
very complex. Suites of cis-regulatory 
modules (CRMs) (Figure 5) can regu-
late multiple genetic loci distributed 
throughout the genome, establishing 
network circuits sometimes called 

“regulons” or “cis-regulatory networks” 
(Dufour et al., 2010).

The combinatorial potential through 
binding various TFs permits a vast range 
of regulatory possibilities, able to engage 
in sophisticated molecular computa-
tions (Shapiro and Sternberg, 2005; 
Davidson and Erwin, 2006). Because 
the underlying physical interactions 
are weak, the components can form 
and dissociate rapidly to permit quick 
responses to signals received. Complex 
computations using weak interactions 
to form novel circuits is also typical of 

Figure 12. Transcription factors possess DNA-binding domains (solid black), 
only portions of which provide the values for receiver variables (the appropriate 
cis-regulatory elements).
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how neurons are wired (London and 
Hausser, 2005; Sidiropoulou et al., 2006; 
Markram et al., 2015).

Computer programmers can use 
“GoTo” type commands. Special signals 
are ubiquitous in cells, which specify 
where molecular machines and com-
ponents are to act, i.e., which organelle, 
subcompartment, or location on a 
membrane. Causing instructions that 
are stored elsewhere to be executed 
goes by names such as functions, meth-
ods, procedures, and subroutines in 
computer programming. In cells, there 
are many examples, such as activating 
hox genes to regulate expression of 
many genes as a modular ensemble and 
activating key TFs to generate genetic 
regulatory genetic circuits (Davidson, 
2006). Remote processing is often en-
capsulated in various subcompartments 
and organelles. We recall that DNA is 
also present in plasmids, mitochondria, 
and chloroplasts, not just chromosomes. 
These decisions also require the use of 
variables.

Another technique used by computer 
languages is the idea of “sleep” or “wait” 
for a fixed or variable time period. We 
find many examples in cells, such as 

feedback inhibition in enzymatic net-
works, gene deactivation, and placing 
the cell cycle on hold.

Other Non-Prescriptive Processing
Most of what happens in computers 
results from explicit instructions, but 
our analysis of coded information sys-
tems clarifies that additional physical 
constraints are also always incorporated 
to ensure the intended outcomes. There 
are design trade-offs, whether to guide 
intention as coded messages or in a hard-
wired physical manner. A computer ex-
ample is when printed paper falls into a 
tray with sides that hold them in place. A 
considerable amount of cellular success 
is based on pure physical-chemical fac-
tors that have been carefully organized, 
a topic we discuss in Part 2.

Read and Write
Computer programs read, write, and de-
lete to long-term and short-term memory 
devices. The codes found in cells must 
be able to read and write data values. 
Setting epigenetic tags are examples of 
medium and long-term write operations, 
which serve to communicate intended 
outcomes later. DNA is usually thought 

of as a fairly permanent source to read 
data from, but DNA can be added to 
a genome via CRISPR (Zetsche et al., 
2015; Ran et al., 2015; Gen News High-
lights, 2015), reverse transcription (e.g., 
telomerase reverse transcriptase that 
maintains the telomeres of eukaryotic 
chromosomes), transfer and acquisi-
tion of new genes via integrons coding 
cassettes (Hall and Collis, 1995), and 
different lateral gene-transfer mecha-
nisms, including transfer of plasmids, in 
prokaryotes. Inteins are another mecha-
nism. These are self-splicing portions of 
proteins with homing endonuclease abil-
ity that snip parts of DNA so that a copy 
of the coding sequence of the intein can 
be inserted there (Gogarten et al., 2002).

DNA can also be modified in other 
ways. DNA segments such as transpo-
sons can be transferred to other sites on 
the genome, and “shufflons” can invert 
sections of DNA, for example, to replace 
part of a coding strand with its comple-
mentary strand to create modified pro-
teins (Tam et al., 2005; Komano, 1999).

Multiprocessing and Threading
Modern computer hardware and soft-
ware designs can parallelize computa-
tions, permitting multiple tasks to be 
carried out simultaneously. This is 
common in cells, such as in the parallel 
production of ATP from many mito-
chondria; translation of several identical 
mRNAs in parallel (several ribosomes 
can also translate the same mRNA si-
multaneously), transcription of multiple 
copies of the same gene, the existence 
of many cells of the same kind, and the 
presence of multiple copies of the same 
subcompartments and organelles.

Reuse of Modules
In good software design, the same 
general-purpose modules, methods, and 
procedures are often reused. A common 
approach is to separate identical portions 
of coding into smaller modules that 
can be invoked from within overarch-
ing modules. This modularity is found 

Figure 13. Iteration loops are common in computer and cellular programming. 
Conditions are tested to determine when to initiate an iterative process and when 
to repeat or terminate it.
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also in cells. As Kirschner and Gerhart 
pointed out (2005, p. 137), “The same 
pathways are used over and over again 
within the same organism for different 
purposes. Thus, they must be modified 
slightly to interact with a variety of pro-
cesses and to work in different environ-
ments and cell types.” They describe the 
interactions as “weak linkages,” which 
we recognize as simply variables or 
parameters used to link subprocesses in 
different manners.

Interchangeable Libraries
In addition to invoking subroutines, sec-
tions of computer code such as classes 
are often imported from a library. Simi-
larly, prokaryotes in particular exchange 
genetic material through horizontal 
(lateral) gene transfer (Thomas and 
Nielsen, 2005; Ochman et al., 2000; 
Koonin, et al., 2001), whereby genes, 
plasmids, and so called “islands” en-
coding specialized adaptive functions 
are exchanged (Dobrindt et al., 2004). 
This permits a huge amount of coding 
to be distributed in the environment and 
put to use rapidly when the need arises, 
facilitating adaptability. This is a form of 
open systems design. Genetic material 
can also be transferred into eukaryotes 
through vectors such as viruses.

III. File formatting
Shapiro and Sternberg (2005) drew 
attention to the parallels between com-
puter file formatting and data storage 
in cells:

The explicit parallel with electronic 
data systems indicates that the ge-
nomic storage medium has to be 
marked, or formatted, with generic 
signals so that operational hardware 
can locate and process the stored 
information. (Shapiro and Sternberg, 
2005)

Data storage can be organized physi-
cally in computer and cell technologies 
using principles such as sectors, disk par-
titioning, and data segments, discussed 
in Part 2. On top of this infrastructure, 

software programs organize different 
data using file formatting. A program 
that interacts with specially structured 
file data must be able to access it cor-
rectly, even though the location of the 
content could be scattered all over the 
physical medium. DNA, RNA, and 
proteins are used as read/write/delete 
storage devices and need to be properly 
formatted so the corresponding “reader” 
will work.

The metadata contained in a com-
puter file header can be stored at the 
start, end, or other areas of the file. 
Likewise, in DNA, RNA, and proteins 
formatting instructions need not be 
found in only one location. Given the 
existence of multiple codes, DNA “files” 
are formatted for use in different man-
ners, depending on the program being 
used. The various ways DNA are packed, 
such as by nucleosomes, determine 
which genes can be processed. Preparing 
portions of DNA for processing by DNA 
polymerase (to identify the starting and 
end points, open and unwind the strands, 
remove bound histones, etc.) is very 
different from the formatting details—
which occur in three dimensions—for 
RNA polymerase. The programs that 
perform DNA error corrections also 
require their own formatting rules. 

Epigenetic tags are often used to 
identify what data to process and how. 
Adding and removing these ligands from 
DNA, RNA, and proteins is an example 
of preparing files for processing and 
must be carefully regulated. Histone 
modifications define which portions of 
DNA can be processed. Over a hundred 
posttranscription modifications have 
been identified in all three major RNA 
species (tRNA, mRNA and rRNA), as 
well as in other families of RNA such as 
snRNA (Cantara et al., 2011). Examples 
of formatting specifications in DNA 
include the use of methylation and de-
methylation (Bird, 2002; Paszkowski and 
Whitham, 2001), binding of TFs (Cheng 
et al., 2012; Davidson, 2006), and rules 
to identify exons (Harrow et al., 2009).

Individual eukaryote mRNAs are 
formatted as individual files with begin-
ning and ending metadata in the form 
of 5’ capping and 3’ polyadenylation, 
attached miRNAs, and so on. This is 
necessary to ensure the ribosome pro-
gram will work properly. Different sets 
of formatting rules are necessary for 
different programs such as separation of 
introns and exons by the spliceosome or 
to degrade RNA.

Formatting on proteins is common. 
Posttranslation modifications (PTM) 
include methylation, phosphorylation, 
acetylation, ubiquitylation, glycosyl-
ation, and sumoylation (Strahl and Allis, 
2000; Jenuwein and Allis, 2001). Struc-
tural three-dimensional recognition 
features, generated with alpha coils, beta 
sheets, disulfide bonds, hydrophobic 
patches, and other features also ensure 
correct formatting of proteins. In cells, 
all this is precisely regulated, often 
down to the atomic level. Reversible 
phosphorylation, the most widespread 
PTM, occurs on the correct atom of a 
serine, threonine, or tyrosine residue 
to form phosphomonoesters or on his-
tidine, arginine, and lysine residues to 
form phosphoramidates (Cieśla et al., 
2011), all according to the particular 
code involved. Recalling the existence 
of signal cascades and enzymatic net-
works, proteins are also carriers of data 
values that get processed by other sensors 
(variables to be assigned values). DNA 
and RNA are not the only information 
carriers in cells. A modification on a TF 
can become a data setting to be used by 
the receiving portion of a second TF. For 
these reasons we see that proteins can be 
formatted and classified into different 

“file types.”
Copies of tagged proteins, RNA, 

and DNA (like nucleosomes) can be 
inherited by somatic daughter cells, and 
sometimes the tag is removed from the 
daughter cell, generating an empty or 
partially empty “file” that can be written 
to. In the same way that a program like 
Excel cannot process a jpg file, each 
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of the cellular information “readers” 
process only the data specially format-
ted for it.

Compressed Archival
DNA is compressed and protected for 
future use by winding sections of ~ 147 
base pairs around a core of 8 positively 
charged histone proteins into nucleo-
somes, and then further compacting 
the nucleosomes into higher order 
chromatin structures complexed with 
protein and RNA (Jenuwein and Allis, 
2001). The portions of DNA that need 
to be expressed must be unpacked and 
reformatted properly. The cellular goal 
is to save physical space and protect the 
medium from degradation. Bacteria 
also quickly lose DNA not immediately 
needed (and can regain genes via lateral 
gene transfer), which saves precious raw 
materials and energy. Computer analo-
gies of the principle include programs 
like zip and the export of tables by a 
database management into a single 
export file, all or parts of which can be 
retrieved and properly structured for 
use later. However, computers use algo-
rithms that recode the original content 
using fewer bits, a principle not known 
in cells. Inspired by cellular compres-
sion, which transforms essentially linear 
DNA into three-dimensional storage, 
engineers might consider designing 
mass storage devices to also store data 
that cannot be used immediately as 
is but, like packed DNA, could be 
reopened when needed.

Summary and Discussion
Recognizing cells as information pro-
cessing devices is the proper way to un-
derstand their holistic intent and design. 
In fact, Gatlin (1972, p. I) defined life as 
an “information processing system,” and 
Britten (Britten, 2003, p. 82) pointed out, 
“We cannot start with DNA and grow a 
cell because there must be an adequate 
initial state of a cell with a vast multitude 
of details under control.” We mentioned 

above that cellular information is 
partially distributed hierarchically and 
recognize that there are many carriers 
in the lower, embedded levels. An organ 
consists of many cells, each of which 
contains many mitochondria, and so 
on. In large populations of prokaryotes, 
the logic processing is distribution over 
many interacting species to form a viable 
ecology, whereas in complex eukaryotes 
considerably more is concentrated 
within the individual organism. In virtu-
ally all biochemical processes, one sees 
strong regulation unless the process is 
malfunctioning, as in cancerous growth 
or viral infection. In other words, there 
are always sophisticated rules for when 
to begin and countermeasures that pre-
vent runaway processing.

Regulation is best designed and 
interpreted using purely formal rules, a 
key feature of software engineering. If, 
for example, a metabolic chain requires 
feedback control to a preceding enzy-
matic reaction, this can be analyzed and 
expressed symbolically, along with the 
mathematical specifications and control 
rules. To instantiate the requirements, a 
physically viable solution then needs to 
be implemented. No rational engineer 
or programmer would think of develop-
ing programs by letting rules and their 
implementation pop into existence ran-
domly without any conceptual guidance.

We saw that conceptual software 
elements such as iteration and control 
structures are developed on top of 
data types—each with their unique 
properties—organized into variables, 
arrays, and linked lists and all this using 
well-defined file formatting to facilitate 
processing by molecular machines. 
Many independent codes found in cells 
make use of these principles. It is hard 
to overstate how important variables are 
in cellular processes to permit regulation 
and maximum adaptability. The loca-
tion, timing, and amount of transcrip-
tion by RNA polymerase is defined by 
CREs (promoters, enhancers, silencers, 
insulators; Kolovos et al., 2012) and 

termination by terminator sequences 
(Ishihama, 2000).

It would require many volumes to 
describe in detail the formal control 
structures used by other cellular activi-
ties, such as homologous chromosome 
crossing-over, VDJ recombination in 
the immune system, nonhomologous 
end-joining (NHEJ) of broken DNA 
ends, DNA transposons (self-insertion, 
excision), telomerase extension, chro-
mosome segregation, DNA compaction, 
binding sites affecting DNA spatial or-
ganization into transcription factories in 
the nucleus, signals for error correction 
and damage repair, and the multitude 
of other cellular processes.

There is considerable evidence 
that damage through random changes 
is actively hindered in cells, such as a 
bias for many retrotransposons to insert 
upstream of transcription initiation sites 
(Shapiro and Sternberg, 2005), which 
prevents damage to coding sequences 
and enhances the potential for a con-
structive regulatory change. Very often 
the regulatory logic makes sense to 
humans skilled on symbol logic, but the 
details are different across taxa and did 
not originate from a common ancestor. 
An example is the signal used in E. coli 
to repress catabolism (the CRP palin-
dromic binding site for the CRP-cAMP 
complex), which is unrelated to that 
found in Bacillus subtilis (CRE element 
recognized by protein CcpA) (Miwa et 
al., 2000).

Coded Systems Can Interact
Although the various codes operate 
independently in cells, they can col-
laborate to ensure a fine-tuned outcome. 
We mentioned epigenetic codes, which 
modify gene expressions, and another 
code based on TFs bound to CREs, 
which also regulate gene expression. 
But in addition, a different code based 
on adding and removing ligands—es-
pecially phosphate groups—modify the 
TFs themselves (Shapiro 2006). Further-
more, TF half-lives are also regulated 
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by the NEnd code. Gene expression is 
further affected by other codes which 
use various classes of RNAs (siRNA, 
snoRNA, miRNA, etc.) that modify 
chromatin accessibility, transcription 
initiation, transcription elongation, RNA 
processing, RNA stability, and mRNA 
translation (Mattick and Makunin, 2006; 
Taft et al., 2010; Storz and Wassarman, 
2005).

By integrating multiple codes, cells 
become highly responsive to what is 
going on throughout the entire cell and 
their external environment. The design 
requirements would be overwhelming 
for humans. The same stretch of DNA 
can be used as variables for some codes 
(e.g., CREs, methylation binding loca-
tions, and after transcription to locate 
regions on mRNA for miRNA binding 
and to specify intron/exon boundary 
locations) while simultaneously provid-
ing the data values for other codes (e.g., 
as codons after transcription and as a 
template for new DNA copies).

These requirements demand formal 
specifications to satisfy all requirements 
and to define what is to be done by each 
code. Synonymous coding from the 
point of view of the genetic code must 
identify protein sequences while simul-
taneously controlling translation rates 
within regions of mRNA. The DNA-
to-RNA conversion code during tran-
scription also needs to control stalling 
of mRNA precursors for spliceosomes 
for purposes of siRNA accumulation 
as part of a host’s defenses to damaging 
transposons (Dumesic et al., 2013).

Collaboration between coding sys-
tems is sometimes linked directly. The 
histone modifications, which involve 
over 100 protein readers, writers, and 
erasers (Carey, 2012, p. 72, 224), some-
times develop protein complexes that 
include the enzymes that methylate 
CpG motifs on DNA (DNMT3A and 
DNMT3B) in the same region the 
histone is located (Carey, 2012, pp. 
73, 89–90). This is another example of 
instantiation using adaptor molecules.

The reverse is also true. The DNA 
methylation code can affect the histone 
code in a synergistic manner. Meth-
ylation attracts more repressive histone 
modifying enzymes (Carey, 2012, pp. 
224–226). Similarly, long ncRNAs locate 
near imprinted genes (which identify 
whether coming from the mother or 
father), and these can recruit epigenetic 
enzymes such as G9a or EZH2, which 
put a methyl tag on lysines K9 and K27of 
histone H3 (a second code) to enhance 
the imprinting (Ikegami et al., 2009). To 
complicate the picture, long ncRNAs 
can increase or decrease expression of 
target genes for reasons not understood.

The miRNA code also interacts with 
enzymes involved in epigenetic codes by 
regulating their effective concentration 
(Carey, 2012, pp. 231–232).

Stem cells express a very different 
set of proteins than differentiated lin-
eages. Not only are different genes de-
activated by blocking TFs bound in the 
cis-element region, but also a different 
set of miRNAs are switched on (a second 
code) to help identify and degrade the 
mRNAs no longer needed by that class 
of cells (Pauli et al., 2011).

Chemotaxis (ability to swim toward 
nutrients and away from noxious stimuli) 
uses two codes in E. coli to respond to 
more than fifty substances. In the first 
one, there are four kinds of receptors 
on the membrane that respond to the 
environment by phosphorylating the 
communication protein CheY, which 
can modify the direction of rotation of 
the flagellar motor through binding at 
certain locations. A second code affects 
the four kinds of receptors themselves by 
adding and removing methyl groups to 
any of eight different sites per receptor. 
The receptors are grouped into triplets 
on the membrane, so the number of 
possible methylation states is astronomi-
cally large. The net outcome of these 
two coded processes is to permit the 
bacteria to “in effect perform calculus” 
(Bray, 2009, p. 94). It is not the absolute 
concentration of external stimulant that 

determines the decision to change direc-
tion of movement, but rather a large 
change in the relative concentration 
(Bray, 2009, pp. 89–97).

In Part 2, we flesh out our under-
standing of cells as holistic entries 
whose hardware components must also 
be taken into account in addition to the 
interacting codes. It is wrong to think 
DNA provides detailed instructions on 
how to assemble an organism. Oyama 
(2002) pointed out that “a gene initiates 
a sequence of events only if one chooses 
to begin analysis at that point: it occupies 
no privileged energetic position outside 
the flux of physical interactions” (p. 40) 
and that “gene transcription and trans-
lation in no way represent instructions 
for building a functioning body” (p. 
69). She correctly mentioned that the 
interactions needed to define organisms 
are inherited as already functioning cells 
and in a similar environmental context 
as the parent (pp. 17–18, 26, 43–49, 77).

Dynamic Nature of Cellular Control
The location of data in computer 
memory is rearranged in controlled 
manners and address pointers are used 
to identify the location of data. For 
cells this is also true, but the process is 
more sophisticated. A TF can search 
for a CRE in three-dimensional space 
and is robust to physical degradation of 
its target through mutations. Unlike a 
computer pointer to a single address, in 
cells n identical TFs or other signals can 
point to multiple locations to activate 
an ensemble of process-related genes. 
In computers, a memory address is usu-
ally referenced directly, whereas in cells 
often a linked chain of pointers referenc-
ing other pointers lead to the sites to be 
activated, which permit refinements, 
including fuzzy logic (Kosko and Isaka, 
1993; http://zadeh.cs.berkeley.edu) to 
be integrated at every step.

Analog Computers
We have not mentioned principles from 
the less-known analog computers in this 
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introduction to logic processing in cells. 
We only wish to point out here that the 
wide diversity in sensors responding 
to signals can produce a rheostat-like 
response (i.e., a continuum of response). 
Software designed for digital computers 
would process this kind of logic by defin-
ing ranges of values for these variables 
and program the appropriate behavior 
for each range. This relates to our sug-
gestion above that computer scientists 
consider using fuzzy variable and fuzzy 
values, being a principle cells use.

Neo-Darwinism Fails to Explain  
the Origin of Logic Processing

In The Plausibility of Life, we read, “The 
architecture of cells is achieved without 
an architect. No central regulation is 
discernible. Cells are in fact capable of 
many structures; many are chameleons 
that change their structure in response 
to circumstances” (Kirchner and Ger-
hart, 2005, p. 148). It is correct that 
there is no set of instructions on DNA 
that specify the detailed order in which 
events are to unfold, but this does not 
deny an architect; in fact, it indicates 
a creator who designed for adaptability 
to changing circumstances (Truman, 
2015). As mentioned above, a virtually 
unlimited variety of responses can be 
executed by using enough variables 
and their values. Adaptability is found 
everywhere in biology, not only within 
cells. Gilbert (2003) provides several 
examples of dramatic polyphenism, or 
open systems adaptability, such as sex 
determination of blue-headed wrasse 
larva depending upon the presence 
of other males or females nearby; diet 
in caterpillars, which enables them to 
change their morphology to camouflage 
themselves according to season when 
born; and predator-secreted chemicals.

Cellular process must be initiated 
and stopped. Runaway execution would 
rarely if ever be acceptable, but why 
should the termination rules develop 
in advance of these thousands of formal 
logic-guided processes? Which evolved 

first, the process or the means to turn it 
off? Natural processes cannot look ahead 
to plan complex solutions to make cells 
and entire organisms adaptable. Gene 
regulatory networks, signal cascades, 
metabolic networks (Figure 14), and 
the operation of molecular machines are 
regulated at many levels using program-
ming constructs recognizable by human 
designers. 

There is no analogy in inanimate 
matter of codes being used to express 
an intended result to ensure continued 
system integrity. This will become clear 
after examining in the next paper how 
extraordinarily complex the molecular 
machines are which are needed to 
implement the code specifications. 

In Figure 15, we clarify the principle, 
which is not found anywhere in inani-
mate nature.

The intuition is that a system with 
complex internal components will be 
repetitively confronted with a decision 
that can be freely made, independent 
of chemical or physical compulsion. 
For each iteration a particular choice 
between alternative paths is correct to 
facilitate the survival of the system (plus 
the decision-making apparatus), based 
on current circumstances.

The cell is full of this decision prin-
ciple, such as where to initiate and stop 
transcription, which amino acid to add 
next to a growing protein, and where a 
restriction enzyme should cut.

Figure 14. Enzyme chain including feedback in aromatic amino acid synthesis 
(Fell, 1997, p. 209).
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We do not find any examples in in-
animate nature, even though this is but 
a minimalist requirement. We are not 
demanding this occurs reliably a huge 
number of times (like millions of correct 
peptide bonds during a cell’s lifetime) 
or that it be able to manufacture all its 
key components, or that the entire ap-
paratus be reliably replicated for many 
generations. We ask only for examples 
showing the basic concept is found in 
some elementary way in inanimate 
nature. Otherwise, no evolutionary 
theory is justified in simply assuming 
grotesquely more complex cells arose in 
the absence of intelligent guidance. This 
is essentially asking about the origin of 
information, like the sequence of codons 
specifying the correct protein chains.

We know from computer technolo-
gies how important proofreading and 
error correction (parity bit rules, etc.) 
are during data storage and transmis-
sion. In cells, this is far more important, 
given the many examples of iteration 

and millions of decisions per second 
involved. We will consider just one code, 
the genetic code, to illustrate the need 
for extreme reliability. If the multiple 
copies of mRNA and their translation 
products were error prone, this would 
lead to error catastrophe during the cell’s 
lifetime. Each new batch of flawed pro-
teins and RNA would lead to ever more 
defective transcription factors, RNA 
polymerases, ribosomes, spliceosomes, 
error-correcting enzyme complexes 
and posttranslation machines, thereby 
producing ever more defective proteins 
and RNA the next time around. The 
same, of course, is also true about all 
the components inherited by daughter 
cells, in particular flawed DNA copies. 

Is this a serious problem? The 
probability that an amino acid will be 
translated correctly depends on many 
factors, but suppose that in the distant 
evolutionary past, before elaborate 
error-correcting molecular machines 
existed, natural processes had somehow 

miraculously reached a state where each 
of the twenty amino acids was translated 
correctly with an average probability of 
0.80 and that proteins back then were 
on average only 200 residues long. The 
chance of obtaining a correctly trans-
lated protein would be (0.8)200 = 4x10–20.

One recent study of 40 proteins 
examined in HeLa cells concluded that 
the lowest number of copies per cell at 
a given time was for the oncogene FOS 
(6000 copies), and the most abundant 
was vimentin (20 million copies) (Zeiler 
et al., 2012). An ancient primitive or-
ganism would not have so many copies. 
We would not expect to get even one 
correctly translated protein but a sea of 
hopelessly flawed, misfolded, and de-
structively interacting ones (for a more 
exact analysis see Part 2). Even if the cell 
could somehow recognize and degrade 
mistranslated ones (somehow using 
molecular machines that themselves are 
hopelessly corrupted), the energy cost 
to produce enough attempts to gener-
ate thousands of necessary good copies 
would be prohibitive.

What is the reality in all cells studied? 
Success rates on the order of “only” 0.8 
per monomer copied? Many processes 
recognize and correct errors, such as 
when DNA is replicated or tRNAs are 
charged. In exonuclease proofreading 
during DNA replication, a mismatched 
duplex is identified and the most recent-
ly incorporated nucleotides removed 
and replaced, eliminating about 99.9% 
of accidental misincorporations from 
the nascent strand (Kunkel Bebenek, 
2000; Ibarra et al., 2009). A second 
mechanism, postreplication mismatch 
repair, then corrects about 99% of those 
misincorporations that escape exonucle-
ase proofreading (Modrich and Lahue, 
1996; Kunkel and Erie, 2005). There 
is also a molecular machine to repair 
double-strand (DS) breaks (Brissett and 
Doherty, 2009).

The other codes must also be highly 
accurate. TFs could bind to a multitude 
of wrong locations on DNA; epigenetic 

Figure 15. In inanimate nature we find no examples of systems with complex 
internal structure repetitively facing a contingent decision and then making the 
correct choice for each iteration based on which outcome supports survival of 
the system during that iteration.
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tags on histones or DNA must be care-
fully controlled; flawed signal sequences 
would cause proteins to be secreted 
improperly; etc. Furthermore, the coded 
variables and variable values must be 
replicated accurately over many genera-
tions, not just the organism’s lifetime. 
A distinct combination of millions of 
methyl tags on DNA cytosines is unique 
to each cell type and needs to be repli-
cated in daughter cells (Carey. 2012, p. 
60) as shown in Figure 16.

We do not know how accurately 
the methylation pattern per CpG must 
be replicated for the daughter lineages 
to still work, but suppose it would be 
enough if “merely” 1/10,000 need to 
be correct (i.e., 99.99% error rate would 
not matter, the resulting pattern would 
still work). Per replication and one mil-
lion CpGs, a successful outcome would 
only occur 4x10–44 of the time (i.e., 
0.99991000000), even given such generous 
constraints. In other words, getting an ac-
ceptable copy will not occur even if only 
1/10,000 tag positions need be correct 
on average. We conclude that evolving 
this new function cannot start crude and 
be refined by random mutations, since 
natural selection would have nothing 
functional or consistent to work on.

Many researchers, especially those of 
a neo-Darwinian persuasion, continue 
to downplay the evidence for deliber-
ate planning found in cells, preferring 
to hold on to the myth that most the 
genome is junk instead of facing the 
reality of multiple codes and an over-
arching systems design. The origin of 
complex features is assumed to result 
from random mutations followed by 
natural selection without recognizing 
or addressing the origin of formal logic 
processing (Dawkins, 1996). Absent in-
formational guidance, the only alterna-
tive is to believe in a series of naturalist 
miracles, such as an initial functional ge-
netic apparatus followed by many more 
miracles including a regulated energy 
source (ATP molecules) and require-
ments such as being able to distribute 

chromosomes and other components 
to daughter cells.

Is this also a probabilistic nightmare? 
There are 2(46 x 2) = 5x1027 ways to distrib-
ute human chromosomes during mitotic 
cell division (Page and Hieter, 1999), of 
which only one is correct. There is a bet-
ter chance to guess two people correctly 
in a row out of everyone who ever lived. 
And these odds need to be overcome by 
every surviving cell every generation, so 
once again error cascade is the natural 

consequence until the process is close 
to flawless. Natural selection is only 
relevant once the system has attained 
miracle-level perfection.

In general, whenever we come 
across the terms “convergent evolution,” 

“genetic piracy,” or “co-optatation,” we 
will discover a failure of neo-Darwinian 
theory and in all likelihood further evi-
dence that logic processing elements are 
being deliberately reused in unrelated 
organisms. For many years the very small 

Figure 16. DNA methylation patterns need to be replicated in daughter cells 
during somatic cell division. After each DNA strand is separated and the second 
strand copied, the DNMT1 enzyme searches for CpG motifs and transfers a 
methyl (Met) group to the new strand where needed. This results in two new 
copies carrying the original methylation pattern.
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amount of data available was misused 
(and continues to be) to claim that a 
gene expressed as part of the same or 
similar processes reveals common ances-
try. In the words of Striedter (Striedter, 
2003, p. 287), “Unfortunately, we now 
know that most genes are expressed in 
several different locations and that many 
homologies based on the expression pat-
terns of single genes have turned out to 
be controversial, to say the least.”

Until one accepts that cells are 
designed logic processors, much data 
will continue to be misunderstood. The 
same transcription factor or the same 
cis-factor pattern could be reused for 
biologically unrelated purposes across 
the biosphere. In programming, we also 
find software elements such as “for (int 
i = 0; i < myList.size(); i++)” in many 
programs, but this does not imply the 
programs are related in any manner. 
The i and myList could represent totally 
different things.

In discussing the Pax-6 gene found 
in vertebrates, Drosophila, squid, and 
even flatworms, Willmer provides an 
example: “Although this could imply a 
common starting point for all eyes, it is 
more likely an example of the univer-
sality of positional and pattern-forming 
determination systems in animals. Note 
also that while Pax-6 in vertebrates is ho-
mologous to the Drosophila gene eyeless, 
other genes related to eye formation in 
vertebrates match bizarrely with genes 
involved in appendage formation and 
with muscle formation in fruit flies; and 
that Pax-6 also regulates the unrelated 
phenomenon of nasal placode formation 
in vertebrates” (Willmer, 2003, p. 38).

Premature evolutionary speculation, 
treated and repeated for decades as prov-
en scientific fact, is being increasingly 
corrected. Discussing the claim that 
the gene engrailed, which is expressed 
in both Drosophila and chordate meta-
meres, proves that segmentation of body 
parts goes back 500 million years ago to 
a common ancestor, Willmer explained 
what more data now actually reveals: 

“This now seems an overinterpretation. 
Although homeobox proteins function 
as transcription factors for other genes, 
the genes they regulate are often quite 
unrelated to segmentation. Furthermore, 
this same Hox sequence appears in a far 
greater range of animals, including un-
segmented nematodes and echinoderms” 
(Willmer, 2003, p. 39). After providing 
other examples, Willner then arrives at 
the correct intuition: “The similarity of 
genes … may lie in processes rather than 
in real homology” (p. 40).

Scientific Guidance through  
the Design Presupposition

The NIH Roadmap Epigenomics Con-
sortium is collecting a huge database 
with DNA accessibility, RNA expres-
sion, histone modification, and DNA 
methylation patterns for 111 human 
reference epigenomes (Kundaje et al., 
2015). One goal is to identify regulatory 
modules that arise during cell lineage 
specification and differentiation. This 
is representative of the general direction 
modern cellular research is beginning 
to take, where it has become indispens-
able to apply principles from symbolic 
logic processing to understand in detail 
the design of cells. Speculative neo-
Darwinism is at best post-facto storytell-
ing; it provides no insights into the big, 
interesting biological questions.

The view that cells were deliberately 
designed to be robust and adaptable 
for long-term viability and interactivity, 
along with the insights of logic process-
ing principles from computer program-
ming, stimulates many fruitful ideas 
to guide future ideas that do not arise 
from the evolutionary worldview. Freed 
from the shackles of possible biological 
functions being constrained to what a 
primitive common ancestor initially 
provided and a limitation on mutational 
accidents to generate nontrivial novelty, 
we suggest how our paradigm provides 
value to guide future research. 
1.	 Cells will be found to be more adapt-

able than suspected to situations 

not encountered before, and when 
the mechanisms are researched, 
we will find the adaptive logic has 
coding aspects, meaning the vari-
ables were already there and able 
to process additional values. Asking 
how one would formally design an 
optimized outcome, independent of 
any misguided prejudice from com-
mon ancestry constraints, should 
help identify new cellular control 
processes. (Post-facto claims for 
unexpected “convergence” is scien-
tifically worthless and contradicts 
neo-Darwinian expectations.)

2.	 Many more forms of complex 
regulation remain to be discovered 
than suspected. No iterative process 
will be found that lacks a formal 
set of rules on how to initiate and 
terminate (unless malfunctioning). 
Whenever it would make sense for 
the concentration and distribution 
of biomolecules to vary, we predict 
evidence will be found this has 
been implemented in a context-
appropriate fashion.

3.	 Given our conviction that cells were 
designed to function as holistic and 
integrate entities, we predict ever 
more discoveries of interconnectiv-
ity between codes so that inputs 
throughout the entire cell and eco-
system can be taken into account 
to regulate processes optimally. We 
expect much will become clear only 
as the optimization trade-offs are 
understood and that quantitative 
analysis will reveal there could not 
have been nearly enough evolution-
ary trial-and-error attempts to explore 
and fine-tune these optimized trade-
offs.

4.	 More quality control checks will be 
discovered at key processing points. 
Researchers should search for error 
checks/correction during transcrip-
tion to RNA and other key interfaces. 
Considering the value to cells of 
recycling valuable raw materials 
of every kind, we anticipate novel 



Volume 52, Spring 2016	 303

discoveries designed to ensure this. 
Conversely, if substances (like cyclic 
RNAs) are found to be long-lived, we 
suggest the Creator had a biological 
reason.

5.	 We expect that when important 
alternative pathways are available, 
the overall optimal one under 
those circumstances is selected un-
less clearly malfunctioning. As an 
example, whether to attempt error 
correction or initiate apoptosis is a 
significant decision for cells based 
on complex cost/benefit/risk trade-
offs. We expect a careful quantita-
tive application of decision theory 
principles—including Bayesian sta-
tistics—to reveal that the outcome 
selected is overall rational.

6.	 For every difficult step creating a 
critical potential processing bottle-
neck, mechanisms will be found 
that resolve these, in the same way 
that we expect that an enzyme will 
be found to catalyze all key bio-
chemical reactions impacting the 
survival of a cell. We also anticipate 
that variants of current enzymes and 
processes can easily be generated 
when it makes sense. This is based 
on our view that general-purpose so-
lutions were often designed, which 
like good open systems design, are 
adaptable. Optimized adaptability 
has nothing to do with the naturalist 
assumptions going under the label 
evolution.

7.	 Since we believe organisms were 
created optimally (with the goal of 
filling the earth’s ecosystems) but 
have accumulated errors over time, 
we will discover residual evidence for 
functioning solutions in the past, at 
the cellular or higher level, which do 
not work as well as before, especially 
for organisms that have undergone 
population-size bottlenecks. Apply-
ing design reasoning to describe how 
ideal solutions would work will help 
us understand how things might 
have worked before.

8.	 We will discover multidimensional 
forms of data storage and retrieval 
not known for computers. These 
will be sophisticated beyond any-
thing a naturalist would dare pre-
dict. We anticipate the existence of 
extraordinary code-based methods 
to store, retrieve, index, network, 
and consolidate in fuzzy logic and 
other mathematical forms all kinds 
of multimedia data (smell, vision, 
taste, sound, tactile memories, 
reasoning chains, numbers, facts, 
etc.) in ensembles of brain cells. 
We dare predict human minds will 
be found to be able to interact with 
these codes in read/write fashion to 
actively guide queries in a parallel 
processing fashion.
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