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Introduction
Mars is a planet of contradictions. 
Planetary scientists were surprised to 
find evidence of water in the past, yet 
secular climate models indicate Mars 
was always cold and dry. Floods appar-
ently produced both outflow channels 
and valley networks (VNs). Most VNs 
are in the southern highlands. They are 
generally about 1 to 5 km wide, about 
50 to 350 m deep, and are up to 4000 
km long (Howard et al., 2005). They 
exhibit interesting features. Some are 
of constant width. VNs have a patchy 
distribution, are immature, follow the 
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surface topography, and show evidence 
of both overland water flow and ground-
water sapping.

Outflow channels, much wider than 
VNs, show evidence of water erupting 
from the ground. The largest outflow 
channel is Kasei Valles, over 400 km 
across, over 2.5 km deep, and about 
2000 km long (Carr, 2006, pp. 113–131). 
This outflow channel is much larger 
than Grand Canyon and suggests flood-
ing up to 100 times the flow of the Lake 
Missoula megaflood on Earth.

Adding to the mystery, Mars exhibits 
subsurface ice in the middle and high 

latitudes and 2-to-4-km thick ice sheets 
at the poles. There has been significant 
volcanism, and Mars once had a power-
ful magnetic field, producing magnetic 
anomalies about 10 to 20 times the in-
tensity of those on Earth. Like other 
solid bodies of the Solar System not 
resurfaced by impact debris and lava 
flows, Mars has numerous impact craters, 
some very large. Planetary scientists have 
great difficulty explaining these features, 
which suggests an alternative history 
may be more successful. 

Six Major Questions
VNs and outflow channels raise six 
major questions (Carr and Malin, 2000, 
p. 366):
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“(1) whether the channels and val-
leys were cut by water, ice, or some 
other fluid, and if they were cut by 
water, as seems likely, then (2) what 
[sic] the relative roles of catastrophic 
floods versus sustained but modest 
flow have been, (3) where the water 
came from (groundwater sapping vs 
surface runoff), (4) how much water 
was involved, (5) where the water 
went, and (6) what the channels 
and valleys imply for the planet’s 
climate history.”

Here, and in Part III, I will address 
these six questions from the Biblical, 
creationist worldview.

1) Were the Outflow Channels 
and VNs Carved by Lava, Ice 
Melt, or Water?
What processes created VNs and outflow 
channels? Water would be an obvious 
answer, but not on a uniformitarian 
Mars. Alternate uniformitarian mecha-
nisms are runoff from ice melt and 
lava erosion. But there is little or no 
evidence for ice in equatorial latitudes, 
where VNs predominantly occur, except 
at high elevations such as the Tharsis 
region (Schon and Head, 2012). So, ice-
melt is unlikely. The best-developed al-
ternative is erosion by low-viscosity lava.

Were Outflow Channels  
Carved by Lava?
Leverington (2011, 2018, 2021) noted 
many problems with water erosion on 
Mars, especially the volume required, 
which he estimated at between 200 and 
1400 m Global Equivalent Layer (GEL), 
the average water depth equalized over 
the entire globe. Others have suggested 
up to 5 km GEL (Luo et al., 2017). Since 
water for outflow channels originated 
below the ground, the porosities and 
permeabilities of Martian rocks are far 
from adequate to support such huge 
eruptions. They would also require large 
liquid reservoirs, but scientists believe at 
least several kilometers of the subsurface 

is frozen. Leverington also notes the 
outflow channels do not have expected 
properties. Water-related sediments, 
such as clays, sulfates, halides, and 
hydrated minerals, though widespread, 
are rare in outflow channels and VNs. 
Moreover, easily weathered minerals, 
such as olivine, are also common, argu-
ing against widespread, long-lasting wet 
conditions.

Leverington advocates outflow chan-
nels being shaped by voluminous effu-
sions of low-viscosity lava. He points to 
channels eroded by lava on the Moon, 
Mercury, Venus, and Earth. Large vol-
umes of lava would be a natural and 
expected process of planetary geology. 
With turbulent flow, it would have 
rapidly eroded channels, essentially 
mimicking water. That would eliminate 
the conundrums presented by water ero-
sion. Leverington claims that flowing 
lava can explain features associated with 
megafloods, such as the dry cataracts and 
streamlined erosional remnants of the 
Channeled Scablands. 

But that theory has its own problems. 
The most basic aspects of lava flow and 

incision, such as mechanical and ther-
mal processes, are not well understood 
(Leverington, 2021). Although lava flows 
are found in some outflow channels, 
they are mostly aggradational and not 
erosive (Dundas and Keszthelyi, 2014). 
Some outflow channels are thousands 
of km long and more than a km deep, 
requiring much lava. Kasei Valles would 
require over one million km3 of lava. 
Such volumes are not evident at the 
channel mouths.

Outflow Channels and VNs  
Carved by Water
These problems suggest that the only 
reasonable answer to the first question 
is that liquid water eroded the VNs and 
outflow channels (Wordsworth, 2016). 

Ubiquitous Evidence of Water
Recent satellite images are consistent 
with this answer which was proposed in 
the 1970s (Ramirez et al., 2014). Besides 
Channeled Scabland features, such as 
streamlined hills (Figure 1), there is 
evidence of paleolakes, alluvial fans, 
deltas (Figure 2), and layered sediments 

Figure 1. Streamlined form around an impact crater in Lethe Vallis outflow chan-
nel (NASA/JPL-Caltech/Univ. of Arizona).
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(Figure 3) formed by precipitation and 
runoff (Davis et al., 2021). Strong evi-
dence exists for hundreds of paleolakes; 
one in McLaughlin Crater was 500 m 
deep and contained 1500 km3 of water 
(Michalski et al., 2019). A new global 
compilation of craters with alluvial fans 
and deltas on Mars indicate that there 
are 314 craters with 890 alluvial fans 
and 114 deltas, indicating widespread 
precipitation and runoff (Wilson et al., 
2021). Turbet et al. (2020) state that 
the evidence for water on the planet 
is overwhelming: high erosion rates, 
sedimentary deposits, hydrated miner-
als, dry riverbeds, and lakes. Moreover, 
some crater rims and central uplifts have 
been eroded by water, with sedimentary 
deposits in the craters (Forsberg-Taylor 
et al., 2004). These features are dated as 
Noachian (Table I), probably because 
that period is believed to have been 
warm and wet.

The awesome fan delta is a sedi-
mentary deposit from Neretva Vallis. 
It was formed when a massive amount 
of water left the valley and spread into 
a lake in the crater. The image is from 
the High Resolution Imaging Experi-
ment (HiRISE) camera aboard NASA’s 
Mars Reconnaissance Orbiter that has a 
resolution as low as 0.25 m.

Clay minerals from water are com-
mon (Ramirez and Craddock, 2018). 
Some clays suggest temperatures of 
298–323°C (Ramirez, 2017). Prehnite, a 
hydrated silicate, is found on Mars and 
requires temperatures of 200–400°C to 
form (Ehlmann and Edwards, 2014). It 
was likely excavated by impacts. Surface 
outcrops, dated to the Noachian, have 
chemically altered minerals (Haberle 
et al., 2019; Riu et al., 2022), but most 
of the surfaces have unweathered basalt 
with olivine, pyroxene, and feldspars 
(Jakosky and Mellon, 2004); all of which 
weather rapidly. The olivine enrich-
ment at the surface likely was caused 
by impacts (Ehlmann and Edwards, 
2014). Olivine is ubiquitous at craters 
greater than 10 km in diameter (Carter 

et al., 2010). How could many easily-
weathered minerals have persisted in a 
warm, wet climate for tens of millions of 
years? Ehlmann and Edwards (2014, p. 
306) conclude: “There remains numer-
ous puzzles and key questions about the 
mineralogy of Mars that build upon the 
discoveries above.”

Martian weathering profiles range 
from a few centimeters to 100 m thick 
(Bultel et al., 2019). A few areas, such 
as Syrtis Major have layered sulfates up 
to 600 m thick (Quinn and Ehlmann, 
2019). These sulfates may be evaporites 
that contain water or were deposited 
during catastrophic chemical precipita-
tion. The most abundant clay mineral is 
Mg/Fe smectite (Scheller et al., 2021), 
overlain by Al smectite, but sometimes 
that order is reversed (Carter et al., 2015; 
Buczkowski et al., 2020). This weather-
ing profile was likely caused by acid rain 
resulting from the formation of sulfuric 

acid from SO2 emitted by volcanoes 
(Loizeau et al., 2018; Bultel et al., 2019). 
Sediments with halide mineralogy are 
also abundant (Fernanders et al., 2022). 
Carr (2006, p. 113) summarizes the 
arguments for a liquid-water origin of 
outflow channels:

“However, the close resemblance 
of the channels and valleys to ter-
restrial water-worn features, the 
abundant presence of water ice, 
the finding of evaporites in Me-
ridiani Planum and elsewhere, and 
the difficulties with other erosive 
agents, make it almost certain that 
the principal erosive agent that cut 
most of the channels and valleys was 
liquid water.”

Surface Rover Results Support 
Liquid Water Erosion
Surface rovers’ data support water ero-
sion on Mars. The Curiosity rover that 

Figure 2. A fan delta in Jezero Crater, Mars, 48 km in diameter, where the Perse-
verance rover landed on February 18, 2021 (NASA/JPL-Caltech).
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landed in Gale Crater on August 6, 2012 
(Figure 4), especially has shown much 
evidence for flooding, for example fans 
and deltas (Palucis et al., 2014, 2016). 
Curiosity proved that what was thought 
to be a lava flow was actually sedimen-
tary rock (Voosen, 2021). Curiosity also 
found evidence for a lake in the crater 
(Edgar et al., 2020; Fraeman, 2021). The 
rover also discovered a 5 km-tall moun-
tain called Mt. Sharp (Aeolis Mons), 
composed of layered rock that is possibly 
fluvial or lacustrine in origin (Fraeman, 
2021) with possibly a buried central peak 
(Grotzinger et al., 2015). Mt. Sharp and 
the crater rim have been fluvially incised 
(Williams et al., 2013). Minerals in the 
lower strata of Mt. Sharp indicate liquid 
water, and include phyllosilicates (clays), 
hydrated silica, sulfates, and iron oxides. 
Sandstones and conglomerates have 
also been observed forming a network 
of braided river channels originating on 
Gale’s northern rim and flowing south. 
The Curiosity rover discovered gravel 
bars with evidence of minimum water 
flow of at least 10 m/sec (Heydari et al., 
2020). Laminated mudstone has also 
been discovered. 

The age of Gale Crater is said 
to vary from early Noachian to early 
Hesperian (Table I), depending upon 
the dating method used (Heydari et 
al., 2020), showing the uncertainty in 
crater counting ages. Voosen (2021, p. 
871) states:

“Any date [from radioactive dating 
on returned lava samples] will also 
help pin down the highly uncertain 
overall martian timeline, currently 
dated by counting the number of 
craters on a given terrain.”

The new Perseverance rover landed 
in Jezero Crater on February 18, 2021, 
and has discovered water- and wind-
eroded features, 40-meter-high cliffs 
of a river delta, and water locked up 
in minerals (Witze, 2021). This crater 
was once home to a lake with evidence 
of powerful flash floods and a delta 
(Anonymous, 2021).

Table I. The four periods of Mars’ alleged uniformitarian history.

Period Date (billion years = Ga)

Pre-Noachian Before 4.1 Ga

Noachian 4.1 to 3.7 Ga

Hesperian 3.7 to 3.0 Ga

Amazonian 3.0 Ga to present

Figure 3. Perseverance image of layered sediments in Jezero Crater, Mars, on 
April 18, 2021 (NASA/JPL-Caltech/ASU/MSSS). The foreground flat-topped 
hill, informally named “Kodiak,” is 2.2 km from the rover and 250 m wide. It 
exposes ancient, layered rocks indicating gradual deposition of sediments in a 
river delta, followed by floods. 
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Was There an Ocean in the 
Northern Lowlands?
Water erosion in a warm, wet climate 
would be aided if an ocean once cov-
ered the northern lowlands (Parker and 
Bills, 2021). Two shorelines have been 
suggested: the lower Deuteronilus level 

and the higher Arabia level (Sholes et al., 
2021), but recent mapping has shown 
the putative shorelines vary laterally by 
hundreds of kilometers and vertically 
by up to 2.2 km! Some think that the 
warping of the shorelines occurred 
during true polar wandering caused by 

the Tharsis volcanic plateau (Citron et 
al., 2018). Some have claimed that a 
large bolide hit the ocean and caused 
tsunamis that spread southward, over-
ran the shorelines, and backwashed 
northward into the “ocean” (Rodrigues 
et al., 2016). Others point to fans and 
deltas at the dichotomy boundary as 
evidence of an even higher shoreline 
(Fawdon et al., 2018), well above the two 
proposed shorelines (Rivera-Hernández 
and Palucis, 2019).

Many problems are associated with 
a northern ocean; some believe there is 
no evidence for it (Carter et al., 2010). 
It is true that water from outflow chan-
nels would end up in the northern 
lowlands, which it did, and if an ocean 
was formed it would quickly freeze and 
take hundreds of thousands of years to 
sublimate (Turbet et al., 2017).

2) Were the channels and 
valley networks eroded by 
a few catastrophic floods or 
many small flows?
The second question is: “How did water 
carve the VNs and outflow channels?” 
Was it by rare catastrophic flows or 
numerous, more modest floods (Carr, 
2006, p. 135; Hargitai et al., 2017)? 
Scientists argue for both (Carr, 2006, 
p. 113; Goldspiel and Squyres, 2011). 
Evidence is accumulating that strongly 
favors catastrophic floods, which height-
ens questions of their origin.

A detailed analysis of the origin of 
VNs from breaches of over 200 paleo-
lakes shows that some valleys formed by 
catastrophic lake breach (Goudge 
et al., 2018). Energy from an initial 
breach would erode the VNs quickly 
since discharge would be sufficiently 
high to maintain cobbles in suspension. 
Subsequent smaller floods, with much 
less erosive energy, would form lower 
terraces, which are hardly ever observed. 
The evidence for rare catastrophic 
floods forming VNs has reinforced the 
opinions of many researchers who have 

Figure 4. Gale Crater, 150 km in diameter, surface minerals, color coded, from 
THEMIS (NASA/JPL-Caltech/ASU). The high area at the top of the crater is Mt. 
Sharp. Windblown dust appears pale pink and olivine-rich basalt looks purple. The 
bright pink on Gale’s floor appears due to a mix of basaltic sand and windblown 
dust. The blue at the summit of Gale’s central mound, Mount Sharp, probably 
comes from local materials exposed there. The typical average Martian surface 
soil looks grayish-green. 
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concluded that the origin of outflow 
channels was likewise catastrophic (Carr, 
2006, p. 113). 

The catastrophic origin of VNs is 
supported by the angle of tributaries 
that enter the main VNs, called the 
branching angle. Examining branching 
angles for main-stem rivers and streams 
across the United States, researchers 
determined that in more humid envi-
ronments with more groundwater flow, 
angles of entrance tend to be higher. But 
in the dry southwestern United States, 
branching angles are more acute (Sey-
bold et al., 2018). This result is indepen-
dent of other variables. The tributaries 
of VNs on Mars branch at lower, acute 
angles, suggesting that Mars VNs were 
caused by brief catastrophic floods:

“The correlation of branching angles 
with climatic controls supports 
the recent shift from groundwater-
dominated theories for Martian 
channel formation … to more recent 
precipitation-based theories…. Our 
analysis suggests that Mars’ channel 
networks were formed in an arid 
continental climate with sporadic 
heavy rainfall events large enough 
to create significant surface runoff.” 
(Seybold et al., 2018, p. 3) 

This suggests at least episodically 
warm temperatures during VN forma-
tion (Cang and Luo, 2019). Thus, VNs 
were apparently formed by catastrophic 
flows. This conclusion is reinforced by a 
large amount of recent research which 
also shows that most of the valleys were 
formed quickly by large surface flows 
of water (Mangold, 2012; Seybold et 
al., 2018).

3) What was the origin of the 
water: groundwater, rainfall 
and runoff, or both?
The third question is whether erosion 
was surface erosion from rain and runoff 
or by groundwater? A more basic ques-
tion is where did the water come from 
in the first place?

VNs Formed by Groundwater? 
Some researchers have suggested in the 
past that the outflow channels and VNs 
were carved by streams that originated 
from groundwater springs (Malin and 
Carr, 1999; Goldspiel and Squyres, 
2000; Aharonson et al., 2002), possibly 
from a pressurized aquifer (Cassanelli 
and Head, 2019). Groundwater sap-
ping is suggested for VNs having a box-
canyon morphology (Howard, 2007). 

VNs Formed by Rainfall?
Most planetary scientists have con-
cluded VNs were eroded by rainfall 
and subsequent runoff. Evidence for 
precipitation is seen in small tributaries 
starting on divides (Fassett and Head, 
2008). This is reinforced by the observa-
tion that some valleys start on volcanoes 
(Hynek et al., 2010), and some craters 
were eroded by rainfall (Craddock and 
Lorenz, 2017).

VNs Carved by Both Rainfall  
and Groundwater
Since there is evidence for a groundwa-
ter origin for some VNs, especially in 
their upper reach tributaries, some have 
suggested that VNs originated from both 
groundwater and surface precipitation 
(Shi et al., 2022). This does not weaken 
the case for rainfall, since it is needed 
to recharge aquifers. 

Outflow Channels Did Form  
from Groundwater
However, outflow channels start from ei-
ther grabens or below chaos regions, sug-
gesting a groundwater origin (Meresse 
et al., 2008; Roda et al., 2017). Chaos 
regions generally consist of irregular 
groups of large blocks, some tens of 
kilometers across and hundred or more 
meters high. The tilted and flat-topped 
blocks form depressions hundreds to 
several thousand meters deep. However, 
groundwater alone is inadequate for the 
volumes of water released (Harrison 
and Grimm, 2008). One problem is 
the frozen ground; another is the low 

permeability of unfrozen ground. Large 
groundwater-sourced floods would re-
quire high permeability over a large area 
(Leverington, 2021); so, how are outflow 
channels to be explained? Part III of this 
series of papers will suggest a solution.

4) What is the quantity of 
water needed for erosion?
The fourth question, “What is the quan-
tity of water needed for erosion?” must 
now be addressed, and there are many 
estimates, which vary widely. Planetary 
scientists do not know how much water 
was needed. Complicating factors in-
clude the existence of a northern ocean, 
whether floods were catastrophic or not, 
how much time it took for the carving of 
outflow channels and VNs, etc.

Estimates of the necessary volume 
of water range from 3 m to 5,000 m 
GEL, which indicates the great variety 
of opinions, models, and uncertain-
ties (Rosenberg et al., 2019). Luo et al. 
(2017) are at the high end. On the other 
extreme, Palumbo and Head (2018) and 
Rosenberg and Head (2015) believe the 
amount of water needed was only 3 m 
to 100 m GEL. Carr and Malin (2000) 
estimated 50 m GEL to carve the VNs 
(Segura et al., 2002). Rosenberg et al. 
(2019) determined an intermediate 
estimate of 640 m GEL. Scheller et al. 
(2021) believe the amount of needed 
water for both the outflow channels and 
VNs ranged from 100 m to 1500 m GEL. 
The wide range of these estimates reveals 
that uniformitarian scientists do not 
know the answer to the fourth question.

The volume largely depends on the 
type of flooding, which has been deter-
mined to be catastrophic. The origin of 
Kasei Valles, the largest outflow chan-
nel, is a case in point. Estimated peak 
discharges range from 104 m3/s to 109 
m3/s (Carr, 2006, p. 117), depending on 
the number of events. Although some 
have suggested Kasei Valles was formed 
by many floods, others have deduced 
that it was formed by one to a few very 



Volume 60, Winter 2024	 163

large floods (Bargrey and Wilson, 2011). 
Earlier, Robinson and Tanaka (1990) 
had concluded that Kasei Valles formed 
in one flood with discharge of 0.9 to 2.3 
x 109 m3/sec. The volumes are more 
problematic in light of evidence favoring 
groundwater eruption. 

The time required to have cut the 
channels and valleys is also unknown. 
Some claim 100,000 to 10 million years 
to form the VNs by slow precipitation 
(Kamada et al., 2020). Rosenberg et al. 
(2019) suggest that eight specific VNs 
could have eroded in anywhere from 8 
years to 592 years. So, the mechanism(s) 
and timing of valley networks, as well as 
outflow channels, depends upon many 
variables. 

Since greater discharge generates 
rapid erosion, catastrophic floods indi-
cate the VNs formed rapidly and that the 
lower estimates of GEL are more likely. 
Goudge et al. (2018, p. 9) conclude:

“Instead, we conclude that the stud-
ied paleolake outlet canyons were 
primarily incised during single epi-
sodes of highly erosive lake overflow 
flooding. This conclusion is also 
physically intuitive, as the potential 
energy stored in the lake is available 
for incision prior to breaching vastly 
exceeds what can be generated by 
slower, post-breach outflow, which 
is inherently bounded by inflow 
rates and dampened by the storage 
capacity of the basin itself” (empha-
sis mine).

Such catastrophic, single-episode 
floods require less water and time. 
They also heighten the mystery of the 
origin of VNs and outflow channels for 
uniformitarians. Less time points to the 
alternative Biblical model with its short 
timescale, which will be presented in 
Part III.

The Problems with Impacts 
Causing the Mars Floods
These four questions lead one to ask 
what the ultimate source of the water 

was. At present, answers are very con-
troversial, considering the present cold, 
dry climate and the main uniformitarian 
assumptions that it has always been so 
(Bauley et al., 2016).

One proposal is that impacts caused 
flooding by creating an ephemeral, 
warm, wet climate. Segura and col-
leagues were early advocates of this 
impact hypothesis (Segura et al., 2002, 
2008, 2012; Toon et al., 2010). Heydari 
et al. (2020, p. 1) also suggest that the 
mechanism for flooding was a large 
impact:

“The most likely mechanism that 
generated flood waters of this mag-
nitude on a planet whose present-day 
average temperatures is - 60°C was 
the sudden heat produced by a large 
impact. The event vaporized frozen 
reservoirs of water and injected large 
amounts of CO2 and CH4 from their 
solid phases into the atmosphere. It 
temporarily interrupted a cold and 
dry climate and generated a warm 
and wet period.”

Such an impact and its hot ejecta 
would no doubt melt much subsurface 
ice if it were present. There could also be 
some water in the impactors, especially 
if they were comets. Impacts would add 
dust/debris to the atmosphere, which 
would tend to cool it off by reflecting 
sunlight back to space. Much water va-
por would be added to the atmosphere 
and warm the climate by the greenhouse 
effect. However, large impacts would 
add only a little CO2 and CH4 to the 
atmosphere, which some planetary 
scientists believe is needed for a warm, 
wet climate. Regardless, water vapor 
itself is about four times more efficient 
at trapping heat energy than CO2, and 
it is probable that water vapor is all that 
is needed to cause a warm, wet climate.

Estimating water produced from a 
large impact is difficult (Segura et al., 
2008). Segura and colleagues estimate 
that an impactor with a 250-km diam-
eter could produce 50 m GEL of water, 
the amount some researchers claim is 

needed to form the valley networks (Carr 
and Malin, 2000). 

Segura’s 1-D model was much too 
simple (Steakley et al., 2019). Steakley 
et al. (2019) used more sophisticated 
1-D and 3-D models with impactors up 
to 100 km and atmospheres up to 2 bars. 
One impact was insufficient to cause 
VN erosion by flooding (Steakely et al., 
2019, p. 186): “Ultimately, the water and 
energy delivered by impacts in these sce-
narios do not result in sustained warm 
and wet climates.” Although, impacts 
do not result in a sustained warm, wet 
climate, a transient warm, wet climate 
can occur with each impact and last for 
many years. Precipitation can be quite 
high the first year, ranging from tens of 
centimeters to several meters, but tail off 
rapidly after that with most precipitation 
as snow. 

But Palumbo and Head (2018) in-
dicate that a 100-km diameter impactor 
would produce only 1 m to 5 m GEL 
and a 250 km impactor only 10 m to 25 
m GEL. Turbet et al. (2020) claim that 
one very large impact would add about 
58 m GEL to the atmosphere with warm-
ing for several tens of years. Steakley et 
al. (2019) claim 640 m to 5000 m GEL 
is required and that the VNs needed 
105 to 107 years to form. They believe 
one large impactor could not produce 
enough water and its effects would be 
too transient.

To further complicate the idea, 
Palumbo and Head (2018) claim that 
precipitation from impacts would be 
homogenous and inconsistent with the 
patchy location of VNs. They also do not 
believe the rainfall would be significant, 
which they predicted to be 2 m/yr. at the 
beginning and decrease rapidly. Further-
more, there would be tens of millions of 
years between impacts. 

Turbet et al. (2020) also ran a variety 
of impact models but with impactors 
greater than 100 km, which would 
produce craters greater than 600 km. 
Some of the impactors would be 200 
km to 500 km in diameter and produce 
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craters 1000 km to 2500 km in diameter, 
assuming the impactor velocity was only 
9 km/s. They obtained similar results 
as Steakley et al (2019) and discovered: 
(1) each very large impact causes only 
0.1 to 1% of atmospheric erosion; (2) 
an impact-induced warm climate lasted 
several tens of years, which they believe 
is too little time, since VNs supposedly 
require about a million years to form; 
(3) about 2.6 m GEL per Earth year 
of water vapor formed with each large 
impact; (4) a large impact would cause a 
hot mantle and crust that would last for 
millions of years; (5) hot silicate vapor 
would fall on the surface first; (6) after 
a short time, hot, intense precipitation 
would occur. Hot water would erode 
VNs quicker (Palumbo and Head, 2018). 

Turbet et al.’s (2020) scenario is con-
sidered unlikely. The hot, intense rain 
from each impact would last about 12 
Martian years (one Martian year equals 
1.88 Earth years). After 15 Martian years, 
the atmospheric temperature would 
drop below freezing, the event ending 
with snow. The effects of an impact last 
only 18 Martian years, and there would 
be no sustained warm, wet climate. The 
impact would produce 58 m GEL of 
precipitation, which is believed to be an 
order of magnitude too small. The 3-D 
atmospheric model produces a strong 
Hadley cell, similar to Earth, in which 
the atmosphere rises at the equator and 
sinks at 30° latitudes. So, heavy precipi-
tation would occur near the equator and 
little precipitation at 30° latitude. The 
VNs are believed to be predominantly 
found at 30°S, which creates a problem 
as to their origin. There is heavy precipi-
tation at high latitudes. Despite impacts 
not being able to produce a long-lasting 
warm, wet climate, they do produce an 
episodic warm, wet climate. 

But due to the uniformitarian crater 
dating, the timing of impacts and VNs 
varies too much. It appears that the 
VNs occurred well after major impact-
ing (Toon et al., 2010). Because the 
uniformitarian impacts are separated 

by long periods of time, each impact is 
thought insignificant.

The Problems with Volcanism 
Causing the Floods
Volcanism, like the Tharsis volcanoes 
(Figure 5), could create a warmer, wetter 
Mars (Samec, 2013; Halevy and Head, 
2014; Jakosky, 2021). Strong volcanism 
can cause warmth and precipitation 
(Cang and Luo, 2019) since volcanic 
emissions are about 90% water vapor 
(Samec, 2013). Scheller et al. (2021) 
estimated the amount of water from vol-
canism on Mars could range up to 120 
m GEL. If the magma contained even 
one percent (1%) water vapor, water 
released to the atmosphere could reach 
125 m GEL (Jakosky, 2021). 

The 125 m GEL is a maximum 
since most water would be entrained 

in the magma. A more realistic num-
ber for water released from extruded 
lava is less than 15 m GEL; so it is 
thus unlikely that volcanism caused 
the floods. Secular scientists spread 
the volcanic eruptions over billions 
of years (Milbury et al., 2012; Broquet 
and Wieczorek, 2019), making each 
eruption insignificant. 

The Tharsis Bulge is believed to 
have volcanic units of all ages (Johnson 
and Phillips, 2005), so the 1.5 bars of 
total CO2 (Phillips et al., 2001) would 
be spread over billions of years. A little 
CO2 can also be supplied by impacts 
(Navarro-Gonzáles et al., 2019). How-
ever, CO2 is a minor gas and research-
ers have concluded other greenhouse 
gases are needed. Volcanoes also emit 
SO2 that becomes sulfuric acid, which 
reflects sunlight back to space, probably 
negating any warming from CO2.

Figure 5. Mars Orbiter Laser Altimeter (MOLA) colorized topographic map of 
the western hemisphere of Mars, showing the Tharsis volcanic bulge with four 
distinctive volcanoes, the Valles Marineris region, and the Kasei Valles. The Argyre 
impact basin is at lower right (NASA). The red, brown, and white colors are high 
altitude, while the green and blue are lower altitude.
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Volcanoes give off ash and aerosols, 
especially SO2, which will cool the 
planet by reflecting sunlight back to 
space, as observed after very large vol-
canic eruptions on Earth. The ash will 
fall out in a matter of weeks, but the 
aerosols would fall out much slower, on 
the order of years. Such cooling could 
negate any warming caused my minor 
gases, except for the water vapor, as 
described above.

Impacts May Have  
Triggered Volcanism
Some researchers suggest that impacts 
triggered volcanism, combining to 
produce a warm, wet climate. Toon et 
al. (2012) think the Hellas impact oc-
curred before Tharsis volcanism. It was 
nearly antipodal to Hellas, suggesting it 
triggered Tharsis volcanism (Phillips et 
al., 2001; Faulkner, 2014). Otherwise, 
the cause of the Tharsis volcanism is un-
known. It is believed that seismic energy 
from a major impact could cause fractur-
ing and surface disruption on the planet 
opposite the impact, creating structural 
weaknesses in the area of the Tharsis 
bulge and its volcanic cones (Spencer, 
1994). However, crater dating makes the 
timing uncertain. Some researchers date 
the main eruptions as Noachian (Fassett 
and Head, 2008), but others believe they 
were late because there are few craters 
on the Tharsis bulge (Carr, 2006; Bauley 
et al., 2016).

As an alternative theory, Reese et al. 
(2002) suggest that Tharsis was caused 
by an impact-induced thermal anomaly. 
This connection also suggests that im-
pacts caused volcanism.

From a Biblical perspective, Samec 
(2013) believes that the volcanism was 
caused by accelerated radiometric decay 
during Creation and/or the Flood. This 
volcanism in turn caused the floods on 
Mars. Although he ignores impacts, 
Samec’s hypothesis for the volcanism 
could be true during the time of the 
Genesis Flood. 

Could Impacts and Volcanism 
Together Cause the Floods?
If impacts and volcanism occurred 
together, the combination might have 
created a warmer atmosphere with pre-
cipitation (Palumbo and Head, 2018; 
Steakley et al., 2019; Shi et al., 2022). 
Carr (2006, p. 130) states: “Most [large 
flood features] appear to have formed 
by eruptions of groundwater triggered 
by impacts, volcanic or tectonic events, 
or by catastrophic drainage of lakes.” 
Rosenberg and Head (2015) believe that 
impacts and volcanism melted ground 
ice to produce VNs. If the flow through 
the valleys was only 4 x 104 m3/s, it would 
take between a few centuries and 10,000 
years to carve VNs (Rosenberg and Head, 
2015). Deep time is a problem for unifor-
mitarians, however. Spacing out impacts 
and eruptions over long ages would not 
allow for needed climate changes and 
flooding.

Glaciation
Impacting models show that the atmo-
sphere would cool rapidly afterwards. 
The last stage of an impact would be 
snow (Segura et al., 2008), beginning 
at high latitudes and spreading toward 
middle latitudes. Along with the 2 km-
to-4 km-thick polar ice sheets, ice could 
have also accumulated at mid-latitudes, 
based on various observed ice flow fea-
tures. Ice is pervasive at the surface and 
in the subsurface from 35°N to 78°N 
(Ramsdale et al., 2019). 

Was ice mostly in soil pores and ice 
lenses in the soil (Sizemore et al., 2015)? 
Evidence of clean ice occurs in the walls 
of new impact craters at mid-latitudes 
(Byrne et al., 2009; Dundas et al., 2014.). 
Ice has been observed to be at least 100 
m thick at eight scarp locations in the 
mid-latitudes (Dundas et al., 2018). 
That which exists between 30° to 50° is 
unstable in the present climate, but does 
not sublimate, thanks to a thin covering 
of wind-blown sediment or regolithic 
debris as shown in Figure 6 (Hepburn 

et al., 2020). The origin of this clear ice 
is unknown, but it must have formed 
by snowfall in a much different climate 
(Mischna, 2018).

The amount of ice in the subsurface 
has recently been established, which 
heightens the mystery of the origin of 
the snow. Based on a dielectric constant 
of the subsurface of 2 to 3, mid-latitude 
ice is probably 300 to 600 m thick 
(Campbell et al., 2021). Moreover, it is 
clean ice that resulted from snow and 
not thick, ice-rich regolith (Dundas et 
al., 2021).

The ice is dated as Amazonian (Ta-
ble I) because of a lack of impact craters 
(Sinha and Ray, 2021), which places 
it well after impacts and volcanism. 
But there is a more logical association 
between glaciation and the formation 
of VNs and outflow channels. This 
suggests impacting occurred quickly, 
creating conditions for rapid flooding. It 
would also indicate that the crater dating 
system is flawed.

Given late Amazonian dates for 
mid- and high-latitude ice, including 
the polar ice sheets, planetary scientists 

Figure 6. A fresh impact crater exposing 
water ice in the white area below the 
regolith (NASA/JPL-Caltech/Univer-
sity of Arizona).
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have devised a theory that at high obli
quity, ice is transferred from the polar 
ice sheets to the mid-latitudes and/or 
equatorial regions by sublimation over 
tens of thousands of years (Bramson et 
al., 2017). When the obliquity becomes 
low again, mid-latitude and/or equato-
rial ice sublimates and condenses on 
the polar ice sheets. But this does not 
explain the origin of the ice, estimated 
at 20 m–40 m GEL.

Numerous  
Periglacial Features
With so much subsurface ice at mid- and 
high-latitudes, there are widespread peri-
glacial features (Sizemore et al., 2015). 
For instance, a polygonal-patterned 
surface is common in the northern 
lowlands as shown in Figure 7 (McEwen 
et al., 2007). It is likely that pingos also 
occur (Soare et al., 2021). Pingos are 
conical, ice-cored hills that form in 
permafrost and range in height on Earth 
from 3 m to 70 m and in diameter from 
30 m to 1,000 m (Figure 8).

Summary
The floods of Mars bring up six major 
questions. Three of them were answered 
in this part: 1) the floods were the result 
of water; 2) the floods were catastrophic; 
and 3) both groundwater and rainfall 
runoff were the cause of VNs. The an-
swer to Carr and Malin’s (2000) third 
question: “What is the ultimate source 
of the water?” was left unanswered. 
The current suggestions are impacts 
and/or volcanism. The fourth question: 
the estimated amount of water varied 
considerably, from 3 m to 5000 m GEL, 
showing the wide range of assumptions 
and uncertainties. The uniformitarian 
scenarios are left with problems, open-
ing the door for a Biblical explanation. 
One will be developed in Part III, which 
will also answer the remaining questions 
of Carr and Malin (2000). 
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 CRS Grants for Creation Research
Each year the National Science Foundation (NSF) distributes billions of dollars to support scientific research. This 

funding has catalyzed the development technologies we now take for granted—smartphone screens, weather 

radar, etc. Unfortunately, agencies like the NSF suffer from a major limitation—namely, the naturalistic worldview 

that dominates academia. Because of this presuppositional blind spot, they do not fund creation research.

The CRS of course does not have billions of dollars at its disposal. However, because of some generous donors, we 

do have the ability to provide some grants to fund investigation of the creation/flood model. If you have an idea for 

original research that could develop this model—but you need funding for equipment, books, site travel, etc.—we 

hope you would consider applying for a CRS grant.

Some things to keep in mind:

•	 Only CRS members are eligible to apply.

•	 The grant amount is $5000 or less. (Larger requests require extraordinary circumstances.)

•	 The researcher must agree to submit an article to CRSQ based on the results of the research.

Here is the process:

•	 Proposals are accepted from January to March each year (see link below for proposal forms).

•	 Proposal reviews and funding decisions take place in April and May.

•	 Contracts for funded proposals go out at the start of June.

For more information, please see the CRS website (https://www.creationresearch.org/ 

vacrc-research-grants) or scan the QR code to the right. There is also a link on that 

page if you are interested in donating to help fund more creation research.

Scripture asks, “Who has despised the day of small things” (Zechariah 4:10)? 

These grants are small compared to the billions available to the NSF, but our prayer 

is that the Lord take these “small things”—which He enables us to do—and uses 

them for His glory.
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