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for Quantifying Truncation of Anticlines:  
A Case Study at Mount St. Helens
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Abstract

The regional-scale erosion of hundreds to thousands of meters 
of stratigraphy remain one of the most pivotal yet debated 

arguments within Flood Geology. Despite the many previous 
studies of erosion of anticlines as one illustration of regional-scale 
erosion, no rigorous mathematical model has been proposed for 
systematic and repeatable modeling of fold surfaces for erosion 
estimates in data scarce locations. As such, this study proposes a 
boundary-value problem approach for modeling symmetric and 
non-verging fold systems. Applied to folds in the Mount St. Helens 
region, the model performed well in describing characteristics 
of the half-wavelength of the fold system. The modeled surface 
resulted in a calculation of 6.16 km of vertical relief eroded from 
the current topography, a value that could be increased to 10.1 km 
when transferring the modeled surface to the outermost observed 
fold surface. Site-specific geology suggests an additional 1 to 4 km 
of stratigraphy may have rested atop this modeled surface. This 
application of boundary-value problems represents a promising 
technique to systematically reconstruct fold systems for erosion 
estimates. The approach requires minimal inputs that are easily 
acquired from geologic maps although this limits its application 
to approximately symmetric and non-verging fold systems. Even 
so, this technique represents a first step towards developing an 
easily deployable yet rigorous approach to model fold systems for 
repeatable and consistent erosion estimates.
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Introduction
Regional-scale erosional patterns remain one of the most 
central yet debated arguments in Flood Geology. The re-
moval of hundreds to thousands of meters of stratigraphy 
from the surface of a landscape remains difficult to explain 
within naturalistic geology and its limited erosional power 
(e.g., Froede, 2004; Oard, 2008; Matthews and Oard, 2015; 
Isaacs, 2020). Instead, these authors argue that examples of 
extreme erosion are evidence of past, high-energy erosion on 
a regional scale consistent with the scales proposed within 
a Biblically-founded geologic framework (Reed et al., 1996). 
Although one of the signature arguments of Flood Geology, 
how such examples of regional-scale erosion fit into the 
Biblical timeline remains a topic of debate (e.g., Holt, 1996; 
Whitmore, 2006; Oard, 2017). Some researchers argue that 
this erosion is a defining characteristic of recessive processes 
during the late-stage Genesis Flood (Oard, 2017), while oth-
ers explain many surficial examples of regional-scale erosion 
as resulting from post-Flood catastrophism while the world 
tended towards a state of quasi-equilibrium before the post-
Flood Ice Age (Whitmore and Garner, 2009; Whitmore, 2013). 
Despite this debate being pivotal in the overarching Flood/
post-Flood controversy, no work has been done to develop 
a systematic, mathematically rigorous approach to calculat-
ing truncation of anticlines despite their frequent mention 
in this literature. 

The lack of methods for reconstructing anticlines is in 
part due to the continual challenge that modeling structures 
pose in industry and academia (Carrera et al., 2009). Tra-
ditionally, fold systems are reconstructed using structural 
contours, which are defined by the intersection of geologic 
units and topographic contours. However, this can be ex-
tremely tedious by hand and requires sufficiently exposed 
bedrock geology. Alternatively, mathematical models have 
been developed for interpolating between points where X, 
Y, and Z values are known. These models generally can only 
be applied to thoroughly mapped locations with abundant 
data such as GPS points, cores, and seismic imaging, which 
are unavailable for many geologic structures (Carrera et 
al., 2009; Hou et al., 2023; and references therein). In the 
absence of alternative methods for data scarce structures, 
Flood geologists have employed various empirical back-of-
the-envelope approaches for estimating the scale of erosion 
(e.g., Oard, 2008; Matthews and Oard, 2015; Isaacs, 2020). 

Given the integral nature of this question for other 
overarching questions in Flood Geology, it is important to 
develop consistent and mathematically rigorous techniques 
for estimating regional-scale erosion in data scarce locations. 
To that end, this paper investigates an application of differen-
tial geometry to develop a simplified mathematical model to 
reconstruct truncated symmetrical anticlines with vertically 

oriented axial planes (that is, non-verging). This approach is 
illustrated with a case study in the Mount St. Helens region 
to estimate the level of vertical erosion (truncation) of the 
Lakeview Peak Anticline stratigraphy. 

Geologic Applications for  
Differential Geometry
As an application of calculus, differential equations are 
frequently used when describing infinitesimally small 

Figure 1. A) Anticline-syncline fold systems are com-
monly conceptualized as cylindrical curves that are 
formed from the shortening and compression of what 
were once planar beds. Note that beds are folded 
parallel to each other to create a sequence of parallel 
cylindrical surfaces where a single function could be 
used to describe the shape of each individual bed. 
The axial surface is the plane that intersects the hinge 
points (peak) of each folded bed in an anticline. When 
a series of parallel axial surfaces are non-vertical (e.g., 
slanted to the west), it is referred to as vergence (such as 
“westward verging folds”). Figure after Fossen (2016).  
B) Folds may also be combined into composite structures 
like anticlinoria, which are comprised of many smaller 
parasitic folds along the overarching enveloping surface 
of the composite structure. Note that axial surfaces are 
vertical meaning that this fold has no vergence. Figure 
after van der Pluijm and Marshak (2004).
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changes in one or more properties necessary to model a 
natural phenomenon. As such, geomorphology frequently 
employs differential calculus to derive equations to describe 
processes such as stream flow and isostasy or to develop 
landscape evolution models (Pelletier, 2013; Bierman and 
Montgomery, 2014). Differential equations need not be 
used only for deriving quantitative relationships between 
variables but can also be used to describe geometry, such as 
curvilinear features such as anticline-syncline fold systems. 
Resulting from the compression of originally planar beds 
into a curved geometry, fold systems are frequently illus-
trated as sine-cosine waves and assumed to be cylindrical. 
As such, Fourier systems, or the sum of an infinite number 
of sine and cosine functions, is the basis for describing the 
general shape of fold geometries (Fossen, 2016, p. 258). 
Hudleston (1973) used a simplified Fourier system to de-
scribe fold geometry as approximating the curve: 

Geologic Applications for Differential Geometry 

As an application of calculus, differential equations are frequently used when describing 
infinitesimally small changes in one or more properties necessary to model a natural 
phenomenon. As such, geomorphology frequently employs differential calculus to derive 
equations to describe processes such as stream flow and isostasy or to develop landscape 
evolution models (Pelletier, 2013; Bierman and Montgomery, 2014). Differential equations need 
not be used only for deriving quantitative relationships between variables but can also be used to 
describe geometry, such as curvilinear features such as anticline-syncline fold systems. Resulting 
from the compression of originally planar beds into a curved geometry, fold systems are 
frequently illustrated as sine-cosine waves and assumed to be cylindrical. As such, Fourier 
systems, or the sum of an infinite number of sine and cosine functions, is the basis for describing 
the general shape of fold geometries (Fossen, 2016, p. 258). Hudleston (1973) used a simplified 
Fourier system to describe fold geometry as approximating the curve:  

𝑓𝑓(𝑥𝑥) = 𝑏𝑏� sin(𝑥𝑥) + 𝑏𝑏� sin(3𝑥𝑥) + 𝑏𝑏� sin(5𝑥𝑥)… 

Where coefficients 𝑏𝑏� are unique to the folds being described. Using this Fourier system, folds 
can be described of a variety of geometries including when their axial plane is nonvertical (that 
is, verging folds; see Figure 1) though not when they are recumbent. When folds are harmonic, 
beds are folded parallel to each other so that the function that describes one bed can be applied to 
all other parallel beds (Fossen, 2016, pp. 258-259). However, folds do not always follow these 
generalized systems, as has been illustrated at Emigrant Pass in Wyoming (Figure 2) (Bergbauer 
and Pollard, 2004). Using GPS points to constrain the geometry, Pollard and Fletcher (2005, pp. 
116-119) apply best-fit lines through eight cross-sections to illustrate the approximate shape of 
the fold (as shown in Figure 3). Although asymmetrical, these shapes remain reminiscent of sine-
cosine waves that can be modeled by differential geometry.  

 

A Boundary-Value Approach to Modeling Symmetrical, Non-Verging Anticlines 

The continual challenge in geomathematical modeling is balancing the precision of the technique 
and the availability of data. For instance, most geologic mapping projects will not include a 
series of GPS points for constraining differential geometric models of fold systems. However, 
regional geologic maps will frequently record several key pieces of information when mapping 
fold systems: 

1) Strike and dip measurements of bedding planes along the fold system. 
2) Approximate elevation of strike and dip measurements as shown plotted on a topographic 

map. 
3) The axial trace (that is, the axial plane of the fold intersecting the land surface) calculated 

through a stereonet analysis of collected strike and dip measurements of folded units. 

Where coefficients bn are unique to the folds being de-
scribed. Using this Fourier system, folds can be described of 
a variety of geometries including when their axial plane is 
nonvertical (that is, verging folds; see Figure 1) though not 
when they are recumbent. When folds are harmonic, beds 
are folded parallel to each other so that the function that 
describes one bed can be applied to all other parallel beds 
(Fossen, 2016, pp. 258–259). However, folds do not always 
follow these generalized systems, as has been illustrated at 

Emigrant Pass in Wyoming (Figure 2) (Bergbauer and Pol-
lard, 2004). Using GPS points to constrain the geometry, 
Pollard and Fletcher (2005, pp. 116–119) apply best-fit lines 
through eight cross-sections to illustrate the approximate 
shape of the fold (as shown in Figure 3). Although asym-
metrical, these shapes remain reminiscent of sine-cosine 
waves that can be modeled by differential geometry. 

A Boundary-Value Approach to Modeling 
Symmetrical, Non-Verging Anticlines
The continual challenge in geomathematical modeling is 
balancing the precision of the technique and the availability 
of data. For instance, most geologic mapping projects will 
not include a series of GPS points for constraining differen-
tial geometric models of fold systems. However, regional 
geologic maps will frequently record several key pieces of 
information when mapping fold systems:
1. Strike and dip measurements of bedding planes along 

the fold system.
2. Approximate elevation of strike and dip measurements 

as shown plotted on a topographic map.
3. The axial trace (that is, the axial plane of the fold inter-

secting the land surface) calculated through a stereonet 
analysis of collected strike and dip measurements of 
folded units.
With this information, the approximate wavelength 

between interpreted folds can be known as well as the axial 
plane of wave minima (synclines) or maxima (anticlines) 

Figure 2. Oblique aerial photograph of the Emigrant Pass anticline in Wyoming. Tracing by Bergbauer and 
Pollard (2004) used to reconstruct the anticline shape using differential geometry. Figure from Bergbauer and 
Pollard (2004).
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and a series of points of known location and bedding slope. 
This provides the constraints for a boundary-value problem, 
a specific category of ordinary differential equations where 
a point of known position and slope is needed to recon-
struct the curvilinear geometry. We can define one generic 
boundary-value problem differential equation as:

With this information, the approximate wavelength between interpreted folds can be known as 
well as the axial plane of wave minima (synclines) or maxima (anticlines) and a series of points 
of known location and bedding slope. This provides the constraints for a boundary-value 
problem, a specific category of ordinary differential equations where a point of known position 
and slope is needed to reconstruct the curvilinear geometry. We can define one generic boundary-
value problem differential equation as: 

𝑦𝑦�� + 𝑎𝑎�𝑦𝑦 = 0 

Where 𝑎𝑎 is a coefficient that captures “half wavelength” 𝜆𝜆�/� or the distance between adjoining 
maximum (peak or anticline) and minimum (trough or syncline): 

𝑎𝑎 = �
𝜋𝜋
𝜆𝜆�

�

� 

In this system, 𝑦𝑦(𝑥𝑥) is the function that describes the fold geometry of interest and where 
𝑦𝑦(0) is the elevation of the strike and dip measurement of interest (that is, the position of a point 
of known slope). The first differentiation 𝑦𝑦′(0) is equal to the slope of the strike and dip 
measurement of interest. With 𝑎𝑎, 𝑦𝑦(0), and 𝑦𝑦′(0) known, this system can be solved by hand or 
with a variety of online, ordinary differential equations (ODE) calculators. The generic solution 
is: 

𝑦𝑦 = 𝐶𝐶� cos(𝑎𝑎𝑥𝑥) + 𝐶𝐶�sin (𝑎𝑎𝑥𝑥) 

Solving for coefficients 𝐶𝐶� and 𝐶𝐶� using the initial conditions 𝑦𝑦(0) and 𝑦𝑦�(0) to create a system 
of equations will yield the function that describes the modeled fold surface. It is important to 
note the sign convention. Positive 𝑦𝑦(0) and 𝑦𝑦�(0) will be for systems where the nearest anticline 
is to the right and the nearest syncline is to the left. If the reverse is the case, the values of 𝑦𝑦(0) 
and 𝑦𝑦�(0) will be negative. 

If the fold is harmonic, beds are parallel so that the function calculated for one bed surface 
can be moved vertically in space to fit to other beds in the sequence. This is important given that 
the modeled bed surface may not be the uppermost folded surface in the sequence. On flat 
terrain, this uppermost surface would be exposed in the center of the syncline in plan view, 
which may consequently have the least data given its minimal exposure. The model function, 
however, can be vertically translated in space until the model syncline axis coincides with the 
mapped syncline axis. 

The model will work for the desired fold system assuming that the fold system is non-
verging, symmetrical, and cylindrical. For some folds, this will be adequate to approximate the 
fold surface. The level of truncation (that is, the erosion of the highest original point of the fold 
to the current land surface) can be calculated as the difference between the elevation of the initial 
point 𝑦𝑦(0) and the maximum elevation on the fold.  
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The model will work for the desired fold system assuming that the fold system is non-
verging, symmetrical, and cylindrical. For some folds, this will be adequate to approximate the 
fold surface. The level of truncation (that is, the erosion of the highest original point of the fold 
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geometry of interest and where y(0) is the elevation of the 
strike and dip measurement of interest (that is, the position 
of a point of known slope). The first differentiation y’(0) is 
equal to the slope of the strike and dip measurement of inter-
est. With a, y(0), and y’(0) known, this system can be solved 
by hand or with a variety of online, ordinary differential 
equations (ODE) calculators. The generic solution is:
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note the sign convention. Positive 𝑦𝑦(0) and 𝑦𝑦�(0) will be for systems where the nearest anticline 
is to the right and the nearest syncline is to the left. If the reverse is the case, the values of 𝑦𝑦(0) 
and 𝑦𝑦�(0) will be negative. 

If the fold is harmonic, beds are parallel so that the function calculated for one bed surface 
can be moved vertically in space to fit to other beds in the sequence. This is important given that 
the modeled bed surface may not be the uppermost folded surface in the sequence. On flat 
terrain, this uppermost surface would be exposed in the center of the syncline in plan view, 
which may consequently have the least data given its minimal exposure. The model function, 
however, can be vertically translated in space until the model syncline axis coincides with the 
mapped syncline axis. 

The model will work for the desired fold system assuming that the fold system is non-
verging, symmetrical, and cylindrical. For some folds, this will be adequate to approximate the 
fold surface. The level of truncation (that is, the erosion of the highest original point of the fold 
to the current land surface) can be calculated as the difference between the elevation of the initial 
point 𝑦𝑦(0) and the maximum elevation on the fold.  

Solving for coefficients C1 and C2 using the initial condi-
tions y(0) and y’(0) to create a system of equations will yield 
the function that describes the modeled fold surface. It is 
important to note the sign convention. Positive y(0) and y’(0)  
will be for systems where the nearest anticline is to the right 
and the nearest syncline is to the left. If the reverse is the case, 
the values of y(0) and y’(0) will be negative.

If the fold is harmonic, beds are parallel so that the 
function calculated for one bed surface can be moved 
vertically in space to fit to other beds in the sequence. This 
is important given that the modeled bed surface may not 
be the uppermost folded surface in the sequence. On flat 
terrain, this uppermost surface would be exposed in the 
center of the syncline in plan view, which may consequently 
have the least data given its minimal exposure. The model 
function, however, can be vertically translated in space 
until the model syncline axis coincides with the mapped 
syncline axis.

The model will work for the desired fold system as-
suming that the fold system is non-verging, symmetrical, 
and cylindrical. For some folds, this will be adequate to 
approximate the fold surface. The level of truncation (that 
is, the erosion of the highest original point of the fold to the 
current land surface) can be calculated as the difference be-
tween the elevation of the initial point y(0) and the maximum 
elevation on the fold. 

Case Study at Mount St. Helens
Although known for its 1980 eruption, Mount St. Helens is 
but the latest example of a long history of volcanism along 
the Cascadia Magmatic Arc (Cheney, 2014). Volcanic activ-
ity dominated the region beginning in the Eocene, result-

Figure 3. Eight profiles of the Emigrant Pass anticline in 
Wyoming that show best fit lines through GPS control 
points to constrain the modeled geometry of the anti-
cline. Note that, although asymmetric, the modeled sur-
faces are still reminiscent to sine-cosine waves. Figure 
from Pollard and Fletcher (2005, pp. 116–119). 
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ing in a record of explosive and effusive eruptive products 
even before the formation of Quaternary stratocones like 
Mount St. Helens (Evarts et al., 1987). Eocene to Miocene 
volcaniclastics and lavas are folded in a series of parasitic 
folds in the Cascade Anticlinorium, an anticlinal composite 
fold comprised of many smaller, parasitic anticlinal and 
synclinal folds from southern British Columbia to northern 
California (Cheney, 2016). Mount St. Helens straddles two 
of these parasitic folds: the Lakeview Peak Anticline to the 
west and the Pole Patch Syncline to the east (Figure 4) (Evarts 
et al., 1993; Evarts, 2001). Consequently, Mount St. Helens 
volcanic products overlay a series of Oligocene to Miocene 
volcanics that dip to the east (Figure 5).

Isaacs (2020) attempted to extrapolate the observed an-
ticlinal surface to estimate the vertical relief that has been 
eroded from the region. By using trigonometry to describe a 
sine function, Isaacs calculated that the crest of the anticline 
was at least 7.85 km above the current landscape. However, 
this approach is a back-of-the-envelope method that assumes 
that the arbitrarily chosen sine function adequately models 
the fold system, which may or may not be the case. The previ-
ously described ordinary differential equation negates this 
problem by using specific geometric information to model 
the original anticlinal surface in a mathematically rigorous 
and repeatable way.

As shown in Figure 6 (Isaacs, 2020), the distance 
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measurement of interest. With 𝑎𝑎, 𝑦𝑦(0), and 𝑦𝑦′(0) known, this system can be solved by hand or 
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terrain, this uppermost surface would be exposed in the center of the syncline in plan view, 
which may consequently have the least data given its minimal exposure. The model function, 
however, can be vertically translated in space until the model syncline axis coincides with the 
mapped syncline axis. 

The model will work for the desired fold system assuming that the fold system is non-
verging, symmetrical, and cylindrical. For some folds, this will be adequate to approximate the 
fold surface. The level of truncation (that is, the erosion of the highest original point of the fold 
to the current land surface) can be calculated as the difference between the elevation of the initial 
point 𝑦𝑦(0) and the maximum elevation on the fold.  
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sine function adequately models the fold system, which may or may not be the case. The 
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Note that we are setting 𝑦𝑦(0) and 𝑦𝑦′(0) to negative values because the nearest syncline is to the 
east and the nearest anticline is to the west when facing north (see earlier description). Our 
resulting modeled function is: 
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This function is shown in Figure 7; notable geometric values that come out of this function are 
noted in Table I. The elevation difference between 𝑦𝑦(0) and the peak of the modeled anticline is 
6.16 km. 
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Figure 4. A cross section of Mount St. Helens and the underlying eastward dipping limb of the Lakeview Peak 
Anticline to the west and adjacent Pole Patch Syncline to the east. Modified from Pringle (2002).
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Discussion
From this case study of Mount St. Helens, we can inspect 
the performance of the proposed differential equation for 
modeling anticlines and by extension the scale of regional 
erosion. As noted in Table I, The distance from y(0) to the 
axis of the modeled syncline and modeled anticline is 14.3% 
and 10.7% from their mapped counterparts, respectively 
(when comparing to their measured distances in Figure 6). 
This illustrates that, despite the fold system not following the 
assumption of symmetrical and non-verging, the modeled 
function performs well in describing the constraints concern-
ing the half-wavelength 

With this information, the approximate wavelength between interpreted folds can be known as 
well as the axial plane of wave minima (synclines) or maxima (anticlines) and a series of points 
of known location and bedding slope. This provides the constraints for a boundary-value 
problem, a specific category of ordinary differential equations where a point of known position 
and slope is needed to reconstruct the curvilinear geometry. We can define one generic boundary-
value problem differential equation as: 

𝑦𝑦�� + 𝑎𝑎�𝑦𝑦 = 0 

Where 𝑎𝑎 is a coefficient that captures “half wavelength” 𝜆𝜆�/� or the distance between adjoining 
maximum (peak or anticline) and minimum (trough or syncline): 
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with a variety of online, ordinary differential equations (ODE) calculators. The generic solution 
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of equations will yield the function that describes the modeled fold surface. It is important to 
note the sign convention. Positive 𝑦𝑦(0) and 𝑦𝑦�(0) will be for systems where the nearest anticline 
is to the right and the nearest syncline is to the left. If the reverse is the case, the values of 𝑦𝑦(0) 
and 𝑦𝑦�(0) will be negative. 

If the fold is harmonic, beds are parallel so that the function calculated for one bed surface 
can be moved vertically in space to fit to other beds in the sequence. This is important given that 
the modeled bed surface may not be the uppermost folded surface in the sequence. On flat 
terrain, this uppermost surface would be exposed in the center of the syncline in plan view, 
which may consequently have the least data given its minimal exposure. The model function, 
however, can be vertically translated in space until the model syncline axis coincides with the 
mapped syncline axis. 

The model will work for the desired fold system assuming that the fold system is non-
verging, symmetrical, and cylindrical. For some folds, this will be adequate to approximate the 
fold surface. The level of truncation (that is, the erosion of the highest original point of the fold 
to the current land surface) can be calculated as the difference between the elevation of the initial 
point 𝑦𝑦(0) and the maximum elevation on the fold.  

 of the mapped fold system. 
The elevation difference between our initial point of inter-

est and the peak of the modeled anticline is 6.16 km, implying 
that 6.16 km has been eroded from the anticline’s crest to 
the current land surface. However, the point of interest is 
not on the outermost bed of the fold system. As discussed 
earlier, in harmonic fold systems the beds will be parallel 
to each other, allowing the function determined for one bed 
to be vertically translated to fit to other known beds in the 
sequence to show the uppermost exposed surface. Assuming 
an average elevation of 1130 m on the modern terrain, the 
modeled surface would be translated vertically 3.90 km to 
match the elevation of the uppermost known folded surface 
that is exposed in the Pole Patch Syncline (as illustrated in 
Figure 7). As such, the total estimated eroded relief reaches 
a value of 10.1 km. 

Swanson (1992) noted that even the exposed stratigraphy 
of the Pole Patch Syncline may not have been the uppermost 
surface of the fold system. Due to the interpreted thermo-
dynamic requirements of post-folding intrusives in the Pole 
Patch Syncline, Swanson believed that 1–4 km of stratigraphy 
had been eroded above what is currently the uppermost 
exposed fold surface, which would represent an additional 
1–4 km of vertical erosion on top of the previously calculated 
10.1 km. Greater than the previously published estimate of 
7.85 km of vertical erosion (Isaacs, 2020), this value remains 
one of the highest known published estimates for truncation 
of anticlines, with earlier studies for the Uinta Anticline in 
Wyoming calculating up to 5.1 km of vertical erosion (Oard 
and Klevberg, 2008). It must be remembered, however, that 
this simplified model is an imperfect representation of the 
fold surface and is thereby only an estimate, as illustrated by 
the error associated in modeling the limbs of the fold system 
summarized in Table I. Even so, this approach offers the po-
tential for a consistent mathematically defined methodology 
that can be translated to sites across regions and compared 
with similar margins of error and implicit assumptions.

Conclusions
The regional-scale erosion of hundreds to thousands of 
meters of stratigraphy remain one of the most pivotal yet 
debated arguments within Flood Geology. Despite the many 

Figure 5. The deforestation along the northern regions of Mount St. Helens during the 18 May 1980 eruption left 
the eastwardly dipping formations (denoted by arrows) of the west limb of the Pole Patch Syncline strikingly 
visible around Spirit Lake.
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Figure 6 (left). A simplified diagram depicting 
Mount St. Helens and underlying fold system 
of the Lakeview Peak Anticline and Pole Patch 
Syncline; arrows denote direction of plunge. 
The line connecting both Lakeview Peak An-
ticline and Pole Patch Syncline is a 44.2 km 
transect representing the distance between 
axes. The star denotes reference point west of 
Smith Creek Butte used in Isaacs (2020), while 
distances between that point and the axes are 
also shown.

 
 
Figure 7 (below). Modeled fold geometry 
(lower curve) resulting from the boundary-
value problem and its vertical translation to 
the uppermost observed fold surface in the 
Pole Patch Syncline (upper surface). Vertical 
line represents average elevation in this area 
and elevation of y(0). Due to sign convention, 
y(0) is negative (y-value shown by horizontal 
line) so that nearest anticline appears to the 
west (negative x-direction) when facing north.
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previous studies of erosion of anticlines as one illustration 
of regional-scale erosion, no rigorous mathematical model 
has been proposed for systematic and repeatable modeling 
of fold surfaces for erosion estimates. As such, this study 
investigated differential geometry approaches to reconstruct 
fold systems. 

Using a case study of the Mount St. Helens region, a 
boundary-value problem was applied to model a sym-
metric and non-verging fold system. The model performed 
moderately well (within 15%) in describing characteristics of 
the half-wavelength of the fold system, giving some level of 
confidence in the application of this simplified model to this 
fold system. The modeled surface resulted in a calculation of 
6.16 km of vertical relief eroded from the current topography, 
a value that could be increased to 10.1 km when transferring 
the modeled surface to the uppermost observed fold surface. 
Site-specific geology suggests an additional 1 to 4 km of 
stratigraphy may have rested atop this modeled surface but 
remains beyond the purview of the mathematical technique.

This application of boundary value problems represents 
a promising technique to systematically reconstruct fold sys-
tems for erosion estimates. The approach requires minimal 
inputs that are easily acquired from geologic maps (initial 
elevation and slope, and distance between fold maxima 
and minima). However, due to the minimal data required 
to constrain the model, researchers must be aware of the 
assumptions implicit in the model (e.g., fold system is not 
strongly verging). Future research may develop alternative 
approaches using differential geometry that better reflect 
local site conditions. Even so, this technique represents a 
first step towards developing an easily deployable yet rig-
orous approach to create repeatable and consistent erosion 
estimates.
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