
1. Introduction

If the world is only a few thousand years old, how is it
that we can see stars seemingly billions of light years away?
Various possible solutions have been discussed in this jour-
nal, including mature creation (Akridge, 1979), curved
space (Byl, 1988), a variable speed of light (Chaffin, 1990;
Byl, 1990). In recent years several authors have proposed a
new possibility: time dilation. In the theory of relativity the
rate at which a clock ticks depends both on its motion and
on the local gravitational field. Could it be that, in the past,
time passed much more slowly on earth than in the distant
parts of the galaxies, so that light from distant galaxies trav-
elled billions of light years during, say, only a few earth
years?

Although this view has received a considerable amount of
publicity in the last few years, it has not yet been fully
worked out. Both Roy Peacock (1990) and Gerald
Schroeder (1990) appeal to time dilation to reconcile Gene-
sis with modern cosmology. However, they provide no
quantitative details and, as we shall see, their proposal is fa-
tally flawed.

A more detailed scenario has been advanced by D. Rus-
sell Humphreys (1994). He has developed a rather elaborate
cosmological model wherein the universe is considered to
emerge from a “white hole” (i.e., the opposite of a collapse
into a black hole). An earth-based observer, being near the
center, would experience a greater gravitational field, result-
ing in a slower clock rate.

While this model looks promising, it is still incomplete
and has not yet been proven able to provide sufficient time
dilation. The scenario Humphreys describes is, as he himself
acknowledges, highly speculative and is not yet backed up
by definite quantitative calculations. All he offers is a possi-
ble outline of a solution. Hence, also this model, in its pre-
sent unfinished state, does not convincingly solve the cre-
ationist problem.

The purpose of this paper is to examine the nature of time
dilation. What conditions must a cosmological model satisfy
for significant time dilation to occur? To this end various
relativistic cosmological models will be examined. We shall
see that in most cosmological models time dilation is not
significant, nor in the right direction. Although it is possible
to construct a static model where time dilation does seem to
work as desired, this model unfortunately predicts large
galactic red shifts, which are not observed.

2. Time Dilation In Special Relativity

In modern physics there are two causes of time dilation:
(1) relative motion and (2) gravitational fields. In special
relativity gravitational field’s are not taken into account, so
that time dilation due only to relative motion is considered.
Two clocks will tick at different rates if they are moving rel-
ative to each other.

The light from distant galaxies is observed to be generally
shifted towards the red end of the spectrum, the amount of
red shift roughly increasing proportional to the distance of
the galaxy. This is sometimes interpreted as a Doppler shift,
the change in frequency due to the motion of an object away
from us through space.

A frequency change implies a corresponding change in
clock rates; the outward motion of a galaxy causes a slow-
ing down of a clock on the galaxy. According to special rel-
ativity (Shadowitz, 1968, p. 40), a time interval Dt, as mea-
sured on a galaxy receding from us at a relative speed v, will
correspond to an earth time interval

As the galactic speed v, with respect to the earth, approaches
the speed of light c, the galactic clock will appear to slow
down to a full stop.
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Unfortunately, however, such time dilation is exactly op-
posite to what we need: The earth clock should be slowed
down, not that of the distant galaxy. We need a long time in-
terval on the distant galaxy during a short time interval on
earth,. Equation (1), on the contrary, gives a long period of
time on earth during a short period of time on the distant
galaxy. Hence this type of time dilation will not help us. In
fact, it makes the problem worse.

3. Time Dilation In General Relativity
Now examine time dilation in general relativity, where

both motion and gravity effects are taken into account.
Peacock (1990, p. 111) and Schroeder (1990, p. 53) have

both suggested that the six creation days are to be measared,
not on earth, but on the divine clock. Due to motional and
gravitational time dilation the divine clock could, presum-
ably, be ticking much slower than an earth-based clock:
Many billions of years could have passed in earth time dur-
ing the corresponding six days of divine time.

But this will not do. The days of Genesis are clearly de-
fined as periods of light and darkness as measured on the
earth. The Genesis account refers to an earth-based clock,
the same clock as that used by cosmologists.

In constructing various cosmological models we take note
of the fact that, as seen from the earth, the uniyerse is
roughly isotropic (i.e., it looks the same in all directions).
Thus, assuming the universe to be spherically symmetric
about the earth, we choose a reference frame with spherical
coordinates, centred on the earth.

In standard cosmology the expansion of the universe is at-
tributed, not to the motion of galaxies through space, but to
the expansion of space itself, in which the galaxies are em-
bedded. [Misner, Thorne, and Wheeler (1973, p. 777) refer
to the expanding space as the “cosmological fluid”.] The
galaxies may have their own appreciable peculiar motions
with respect to the local space of the universe. However,
since we are in, terested primarily in general, averaged ef-
fects, we shall consider the galaxies to be locally at rest, any
relative motion between them and the earth being due to the
expansion of the universe as a whole.

According to general relativity, the basic equation gov-
erning the spacetime geometry is given by (Weinberg, 1972,
p. 177)

This equation gives the change in t, the “proper” time (i.e.,
the time as measured by the observer’s clock) as the ob-
server moves a small distance (measured in terms of
changes in the radial coordinate r, and the angular coordi-

nates u and f) during a small interval of t, the “coordinate”
time (i.e., the ideal time in the absence of gravity). The
terms g00 and grr, called “metric coefficients,” measure the
distortion due to gravity of time and space, respectively. For
weak fields, where the distortions are small, both coeffi-
cients are close to 1.

Homogeneous Models
In standard big bang cosmology the earth is denied any

special position; the universe is assumed to be isotropic
from any position. This is known as the Cosmological Prin-
ciple. It implies that the universe is everywhere the same
(i.e., it is “homogeneous”) and has no edges.

In a homogeneous universe the gravitational potential at
any time is the same everywhere. Consequently, the metric
coefficients will not vary with r and all clocks locally at rest
will tick at the same rates. There is no gravitational time di-
lation in a homogeneous universe.

There will be some time dilation due to the expansion of
the universe. As we shall see below, the expansion will gen-
erate a red shift that corresponds to a slowing down of
clocks on distant galaxies by a fraction equal to the frac-
tional change in the size of the universe during the trans-
mission of light. The presently observed red shifts corre-
spond to a time dilation effect that is both too small and in
the wrong direction for the time dilation hypothesis which
postulates that distant clocks should appear to be relatively
faster, not slower. 

Free-Fall Models
Perhaps non-homogeneous models are more conducive to

time dilation. Following Humphreys (1994), we now con-
sider a model where the universe is a sphere of radius R with
uniform density r, centred about the earth. Recall that the
galaxies are embedded in the universe: Their separations,
measured as fractions of the radius of the universe, remain
constant as the universe expands. It is thus most convenient
to choose h as a “comoving” coordinate, which varies from
0, at the center, to 1 at the edge (i.e., h = r/R). Suppose that
there is no pressure and the material is acted on by purely
gravitational forces. Then the matter will be in “free-fall.” If
the material is given an initial outward velocity then we
get Humphreys’ white hole model, which is the reverse of a
star collapsing into a black hole. Such a model has the fol-

lowing metric (Weinberg, 1972, pp. 344, 412; Humphreys,
1994, p. 91):
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Here u and f denote the angular position and k is a constant
depending on the curvature.

Note that for a galactic clock, embedded in the local
space, the coordinates h, u, and f are constant. Hence
dt = dt (i.e., the proper time equals the coordinate time) and
there is no gravitational time, dilation. All galactic clbcks
tick at the same rate.

This result, which is similar to that for the homogeneous
case, is not surprising, for equation (3) is identical to the
Robertson-Walker metric for a homogeneous universe
(Humphreys, p. 114; Weinberg, p. 344). In the free-fall
model one can expect gravitational time dilation to be ab-
sent (g00 = 1) because the equivalence principle — the basis
of general relativity — states that clocks in free-fall are not
affected by gravity. It follows that this model yields the
same time dilation effects as the previous case.

Why, then, does Humphreys get an apparent dilation?
Humphreys follows the calculations of Weinberg (pp. 342-
349) and Klein (1961), for the collapse of a star. Both of
these authors arrive at equation (3) for comoving observers
inside the star. On the other hand, for an observer at rest out-
side the star they obtain the static Schwarzschild metric,
wherein time dilation does occur. It is only when one
rewrites the interior coordinates in terms of the exterior, sta-
tic Schwarzschild coordinates that the apparent time dilation
arises, since then there is a singularity at the Schwarzschild
radius. Such a transformation is needed to describe the col-
lapse of the star in terms of a stationary human observer out-
side the star. However, when applied to Humphreys’ model
of the universe such a transformation serves no purpose,
since all observers are, of course, inside the universe. In par-
ticular, as viewed by an earth-based observer, in terms of
time measured by his earth clock, the metric of equation (3)
is the pertinent one. Much the same point has been made by
Conner and Page (1995) in their critique of this model.

This conclusion regarding the absence of time dilation in
free-fall models is consistent with other papers on spheri-
cally symmetric non-homogeneous free-fall models. For ex-
ample, G. C. Omer (1965) examined arbitrary spherically
symmetric distributions (of which Humphreys’ model is
presumably a special case). Although such models clearly
have a center and a gravitational potential gradient, Omer’s
metric in co-moving coordinates has no time dilation (i.e.,
the dt2 term has a constant coefficient). Even more instruc-
tive is the work of Oscar Klein, whose (1961) analysis of a
collapsing star forms a basis for Humphreys’ calculations. In
a later paper Klein (1971) himself studied a cosmological
model identical to that of Humphreys: a bounded, finite uni-
verse of constant density which has a definite center and a
gravtational potential gradient. There Klein did apply a con-
tinuity condition at the boundary to limit the maximum den-
sity of the university (he believed that the universe cannot

collapse past the Schwarzschild radius). Yet he analyzed all
observations using the interior metric (equation 3). For ex-
ample, Klein finds that the frequency shift we should ob-
serve from a distant source within the universe depends only
on the fractional change in the scale factor R during the light
travel time. There is no ftirther change due to differences in
gravitational potential, implying that there is no time dila-
tion.

Static Models
Next consider some static models. Again, we assume the

universe to be a sphere of uniform density r and radius R.
To apply equation (2) we must first calculate the metric co-
efficients. A spherically symmetric mass distribution yields
(Schutz, p. 259)

Here G is the gravitational constant and m is mass within a
radius r, given by

The goo term is more difficult to determine, as it depends
also on the pressure. We first define a new variable F as
follows

To keep the universe static in the gravitational field requires
F to obey the equation (Schutz, 1990, p. 256)

where p is the pressure. Furthermore, it follows (Schutz, p.
257; Misner, p. 608) that

The Static Zero Pressure Case
Consider first the static case with no pressure. This is, of

course, physically unrealistic, since with no pressure to
counterbalance gravity the universe cannot remain static but
will collapse. However, this may serve to isolate the effect
of the mass distribution alone on time dilation. If p = 0 and
integrating the last equation, we find
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where K is an integration constant. This yields

where C = eK. What is C? For r > R, it is found (Misner, et
al., p. 607) that

where M is the total mass of the universe, given by
(4/3)prR3. At r = R equations (10) and (11) must match,
giving

To slow the earth clock, equation (2) requires that g00 ap-
proach zero at the earth. According to equations (10) and
(12), this can happen only when R approaches 2GM/c2. This
critical value of R is known as the Schwarzschild radius,
which we shall denote S. In terms of S we can rewrite g00
and grr as,follows

Note that for S/R << 1 we obtain the approximation:

This corresponds to the static Newtonian potential, referred
to by Humphreys (1994, p. 100).

Equation (13) indicates that, as R approaches S, the term
g00 approaches zero for all values of r and all clocks will
slow down. Will this fulfill the time dilation hypothesis?

The crucial question is how long will it take a photon to
travel from a distant galaxy to the earth. To calculate this we
return to equation (2). Since the earth is at the center of our
coordinate system, the photon will be traveling along a ra-
dial line, so that du = df = 0. Furthermore, since photons
travel at the speed of light, equation (1) with v = c tells us

that its clock is effectively stopped. Hence, for photons,
dt = 0, in equation (2). Solving equation (2) for dt/dr, we
find that the photon travel time from r to 0 is thus given by

At the earth, which is fixed at r = 0 during this time, we have
dr = du = df = 0, and equation (2) gives the proper time in-
terval elapsed as (see Misner, et al., p. 1107)

In terms of the travel time in the absence of gravity (i.e., r/c),
the fractional travel time, Dtrel, is

For this particular model, using the metric coefficients given
by equations (13) and (14), the relative photon flight time is
thus

If the photon comes from the edge of the universe (i.e.,
r = R) then this equation holds only for R > S. Since the in-
tegrand is always larger than 1, the integral is greater than r,
so that Dtrel > 1 (in fact, Dtrel increases from 1, at R = ∞ to
1.2, at R = S). Hence, also here, time dilation does not de-
crease the photon flight time.

For R < S this equation can still be used, but only for r <
(R3/S)1/2. In this case, too, the relative flight time is greater
than that in flat space. Thus this static model provides no
time dilation for earth clocks.

A Static Model with Pressure

Finally, consider a static model with a pressure term. This
is more realistic than the previous case, since the gravita-
tional field is now somehow balanced. The case is then iden-
tical to that of a static star of uniform density, which is well-
known (e.g., Schutz, p. 262; Weinberg, p. 331; Misner, et al.,
p. 610). The grr term is the same as before, but g00 is now
given by
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Equation (18) yields a relative flight time of

Note that there are two singularities, one at R = S and an-
other when

(22)

This corresponds to R = 9S/8. To avoid both singularities,
we constrain equation (21) to cases where R > 9S/8, or
S/R < 8/9.

Now calculate the relative photon flight time from the
edge of the universe (i.e., r = R) as a function of H, which is
defined as H = 8/9 - S/R. Numerical integration of equation
(21) shows that ∆τ rel approaches 0 as H approaches 0 (see
Table I). In particular, for small values of H, ∆τ rel=

Table 1. The relative photon travel time as a function of
H=8 /9 -S /R .

H 0  .000 .00l .0l  .1  .2  .4  .6  .8

∆τ rel
0  0.04 0.15 0.47 0.89 0.98 1.02 1.02 1.0

For example, a reduction of the flight time from, say 1 bil-
lion years to 1000 years (i.e., ∆τ rel = 10-6) requires R/S to
be within about H = 0.2 x 10-12 of 9/8. Hence, if the universe
is poised at precisely the proper radius, time dilation be-
comes highly significant.

What is the value of the critical radius Rcrit = 9S/8?
Humphreys (p. 105) estimates the mass of the universe, M,
as about 3 x 1051 kg, based on a radius of 20 billion light
years and a density of 10-28 kg/m3. Taking c, the speed of
light, as 3 x l08 m/s and one light year as 9.5 x 1015 m, we
get Rcrit = 8 x l08 light years. This is about 1/25th of the cur-
rent assumed radius of the universe.

The time-dilation hypothesis thus requires the following
scenario. The universe remained fixed at the critical radius
for billions of years of coordinate time, which was just a few
earth years. This was followed by a very rapid expansion
from Rcrit to almost the present radius (a factor of about 25)
in at most a few thousand earth years. During this phase, the
radius no longer being near the critical value, time dilation
was greatly diminished: Earth time and coordinate time dif-
fered by at most a small percentage. If the universe were
presently still in a state of such rapid expansion one would
expect the brightness of the galaxies to fade appreciably
over an interval of, say, 80 years. Since this has not been ob-

served, one must postulate that, after a brief period of rapid
expansion, the expansion rate was greatly reduced.

Note that the rapid expansion of the universe of a few bil-
lion lightyears during a few thousand years implies that the
most distant galaxies receded from us at speeds greater than
that of light. Such faster than light speeds do not contradict
special relativity, for that limits speeds only with respect to
the local space. Relativity theory places no constraint on the
expansion rate of space itself. Faster than light stretching of
space occurs also in inflationary cosmology (Linde, 1994).

4. Red Shifts

If significant time dilation has taken place then there
should be further observational consequences. For example,
since measurements of the frequency of light depend on the
local clock rate, time dilation will alter the frequency, and
thus also the wavelength of light. Let us calculate how the
wavelength of light is altered in its journey from emission at
observer 1 to reception by observer 2.

The wavelength of light can be altered by: (1) a Doppler
effect due to motion of emitter or receiver relative to the
local cosmological fluid, (2) local gravitational time dilation
at the emitter or receiver, and (3) an expansion of the uni-
verse during transmission.

Assume, as before, that both observers are at rest with re-
spect to the local matter of the universe. Local Doppler ef-
fects will thus be neglected. Further, in order to have strong
time dilation effects, assume that at emission the universe
was static (with pressure) and at the critical radius. After
emission assume, for simplicity, that the universe reverted to
the uniform density, free-fall case, so that the Robertson-
Walker metric (i.e., equation (3)) applies.

Changes in the wavelength of light emitted from observer
1 and later received by observer 2 then depend on three
steps:

(1) At emission, gravitational time dilation will cause the
wavelength λ, as measured by observer 1 at r = r1 to be
stretched by a factor g00

-1/2(r1), the ratio of the local proper
time and the (flat) coordinate time.

(2) During transmission the wavelength will be affected
by the expansion of the universe. If the density is to remain
uniform all portions of the universe must expand at the same
rate. The expansion of space stretches the wavelength by
R(t2)/R(t1), the fraction by which the universe has stretched
during transmission. It is important to note that only the end
values of R are important, not how R actually varied with
time: it is not affected by rapid acceleration or deceleration
(Misner, et al., p. 778; Weinberg, p. 416).

Humphreys (1994, p. 121) notes that the amount of red
shift depends not on the expansion rate but only on the
amount by which space has been stretched. He then asserts
that it does not matter whether the expansion took place in
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20 billion years or in six days. Yet one must be careful. Sup-
pose that galaxy A is 1 million light years distant and galaxy
B is 1 billion light years distant. For a slow, uniform expan-
sion, the light we now receive from A will have been emit-
ted much later than that of B. Hence the light from A will
have undergone a much smaller stretching while in transit,
corresponding to a smaller red shift. In this case z should be
proportional to distance (i.e., the Hubble relation), as is ob-
served. On the other hand, if the expansion occurs in a very
rapid burst (as is postulated above) after the light from A
was emitted, then the light from both A and B will be
stretched by the same amount. In that case A and B (and
other distant galaxies) will have the same red shift due to the
expansion of space.

(3) At reception by another observer at r2, another gravi-
tational time dilation effect will change the wavelength by a
factor g00

1/2(r2), to bring it into observer 2’s proper time.
Combining all three effects, we calculate z, the fractional

change in wavelength to be

(23)

Let us now use this equation to calculate the red shift we
should presently be observing for light from distant galax-
ies. If the light has been time-dilated it must have been emit-
ted at the critical radius, so that R(t1) = 9S/8 and, applying
equation (20),

(24)

The critical radius was about 8 x l08 light years, 25 times
smaller than the current estimated radius, yielding R(t2)/
R(t1) = 25. All significantly time-dilated light now received
from distant galaxies must have been emitted while (or pos-
sibly before) the universe was very near the critical radius.
Hence, for all such distant galaxies, the stretching factor of
25 applies.

At reception at the earth, r2 = 0. Assuming that the free-
fall model now applies, g00(0) has a value of 1 [actually, this
differs very little from that of the static model with pressure:
equation (20) with R at the current radius yields a value of
0.95]. Equation (23) then gives

(25)

Note that z varies from 74 for the furthest galaxies at r = R,
to infinity for the nearest ones. For r << R we have z =

Figure 1. Redshift versus distance. The thin line represents equation
(25), the thick line the observed relationship.

112/(r/R)2. This is quite different from the observed situa-
tion, where z is roughly proportional to r, increasing to a
maximum of about 3.5 (see figure 1).

These, results depend somewhat on our estimates of the
density and radius of the universe, quantities that are not
known with a high degree of accuracy. However, changes in
the radius or density do not greatly alter the general nature
of the predicted red shift curve. If the density were 10 times
greater than estimated, this would increase the critical radius
by a factor of 10, reducing the red shift in equation (25) by
a corresponding factor of 10. Figure 1 indicates that this still
results in much too high red shifts for most galaxies.

Could it be that the actual density is so high that the crit-
ical radius is R = 9S/8 and that the static model with pres-
sure still applies? In that case, R(t2)/R(t1) = 1. For observer
2 at the earth, r2 = 0, and equation (20) gives g00

1/2(r,) = 0.
Thus the light, as received at the earth, is shifted infinitely
far to the blue (i.e., λ2 = 0); significant time dilation in a sta-
tic universe causes light from distant galaxies to be strongly
blue shifted, which is not presently observed to be the case.

5. Conclusions

In summary, neither special nor general relativity appear
to lend much support to the time dilation hypothesis. Al-
though special relativity predicts time dilation due to mo-
tion, this is in the wrong direction. In the most natural gen-
eral relativistic cosmological models (e.g., homogeneous or
free-fall) gravitational time dilation does not apply and time
dilation due to expansion is in the wrong direction.

Sufficiently large time dilation in the desired sense was
found only in a static model with pressure. Unfortunately,
this model has a number of serious problems that must still
be overcome. The most important deficiency concerns the
predicted red shifts, which differ drastically from the ob-
served values. It is not clear how this can be resolved with-
out the introduction of rather elaborate, artificial ad hoc
modifications. Other difficulties include those of accounting
for the pressure in the static phase and finding a physical
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cause for the brief burst of rapid expansion. There seems to
be no obvious natural explanation as to why the universe
should behave in such an eccentric manner.

Furthermore, it should be noted, that this model does not
eliminate the need for “mature” creation of stars. Although,
presumably, time dilation might allow distant stars sufficient
time to develop via natural means, this is not the case for
nearby stars. Certainly not for the Sun, where the cosmic
gravitational potential - and hence the clock rate - is es-
sentially the same as at the earth.

Of course, a cosmological model is not disproved by a
mere inability to provide complete naturalistic explanations
for all its details. Such shortcomings may merely reflect cur-
rent human ignorance; further research might find viable
remedies. On the other hand, it could be that naturalistic ex-
planations fall short because of the existence of supernatural
causes. In that case no scientific cosmological model will be
adequate. Let us thus build our cosmological models with
caution, testing them where possible with what God has re-
vealed to us, and staying fully aware of their severe limita-
tions.
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LETTERS TO THE EDITOR
It’s Just a Matter of Time

Before I get to the delightful chore of quibbling with
John Byl over his article “On Time Dilation in Cosmology”
(1997), let me mention several important points of agree-
ment. First, we agree that young-earth creationism has not
had, and needs, a good cosmology. Second, we agree that
creationists can and should try to use general relativity to
meet that need. If my book Starlight and Time (1994) is re-
membered for nothing else, it would please me greatly to
see it remembered for breaking the ice in those two areas.

I also want to commend Dr. Byl for introducing and dis-
cussing some models of his own. I do not have space to dis-
cuss those models here, but I find them interesting. As I re-
marked in my book, if we have a multiplicity of young-earth
cosmologies to choose from, we are much more likely to ar-
rive at the truth.

Byl’s Coordinates Conceal Time Dilation

Now, let’s quibble! The essence of Byl’s criticism of my
model is in his section “Free-fall Models.” After introduc-

ing the Robertson-Walker system of coordinates in his
(metric) equation (3), he then asserts that “... there is no
gravitational time dilation. All galactic clocks tick at the
same rate.”

Here Byl, perhaps unwittingly, has swept time dilation
under the rug of a definition. The time coordinate he has
chosen is cosmic time or “proper” time, which I explain on
pages 89 and 92 of my book. I symbolize cosmic time by
the Greek letter τ, but Byl symbolizes it by the Roman let-
ter t (which will confuse readers wanting to compare the
two papers). Cosmic time is the time registered by an ordi-
nary clock affected by gravity.

Imagine a set of clocks which God synchronizes at the in-
stant of creation, when everything is close together. Assign
one clock to ride along with each newly-forming galaxy. As
space and the galaxies expand outward away from each
other, the clocks also move away from one another. Each
one ticks at a rate determined by its position in the gravita-
tional potential “well” Cosmic time defines two events in
separate places as being “simultaneous” if the cosmic




